对数e的运算法则与公式
1个回答
展开全部
(1)ln e = 1
(2)ln e^x = x
(3)ln e^e = e
(4)e^(ln x) = x
(5)de^x/dx = e^x
(6)d ln x / dx = 1/x
(7)∫ e^x dx = e^x + c
(8)∫ xe^xdx = xe^x - e^x + c
(9)e^x = 1+x+x^2/2!+x^3/3!+x^4/4!+....
(10)d(e^x sinx)/dx = e^x sinx +e^xcosx=e^x(sinx+cosx)
扩展资料:
自然常数e的由来:
第一次提到常数e,是约翰·纳皮尔(John Napier)于1618年出版的对数著作附录中的一张表。但它没有记录这常数,只有由它为底计算出的一张自然对数列表,通常认为是由威廉·奥特雷德制作。第一次把e看为常数的是雅各·伯努利(Jacob Bernoulli)。
已知的第一次用到常数e,是莱布尼茨于1690年和1691年给惠更斯的通信,以b表示。1727年欧拉开始用e来表示这常数;而e第一次在出版物用到,是1736年欧拉的《力学》(Mechanica)。虽然以后也有研究者用字母c表示,但e较常用,终于成为标准。
(2)ln e^x = x
(3)ln e^e = e
(4)e^(ln x) = x
(5)de^x/dx = e^x
(6)d ln x / dx = 1/x
(7)∫ e^x dx = e^x + c
(8)∫ xe^xdx = xe^x - e^x + c
(9)e^x = 1+x+x^2/2!+x^3/3!+x^4/4!+....
(10)d(e^x sinx)/dx = e^x sinx +e^xcosx=e^x(sinx+cosx)
扩展资料:
自然常数e的由来:
第一次提到常数e,是约翰·纳皮尔(John Napier)于1618年出版的对数著作附录中的一张表。但它没有记录这常数,只有由它为底计算出的一张自然对数列表,通常认为是由威廉·奥特雷德制作。第一次把e看为常数的是雅各·伯努利(Jacob Bernoulli)。
已知的第一次用到常数e,是莱布尼茨于1690年和1691年给惠更斯的通信,以b表示。1727年欧拉开始用e来表示这常数;而e第一次在出版物用到,是1736年欧拉的《力学》(Mechanica)。虽然以后也有研究者用字母c表示,但e较常用,终于成为标准。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询