斐波那契数列算法
1个回答
展开全部
斐波那契数列,又称黄金分割数列,指的是这样一个数列:0、1、1、2、3、5、8、13、21、34、……在数学上,斐波纳契数列以如下被以递归的方法定义:F(0)=0,F(1)=1,F(n)=F(n-1)+F(n-2)(n≥2,n∈N*)在现代物理、准晶体结构、化学等领域,斐波纳契数列都有直接的应用,为此,美国数学会从1963起出版了以《斐波纳契数列季刊》为名的一份数学杂志,用于专门刊载这方面的研究成果。
我们以求解f(10)作为例子来分析递归求解的过程。要求得f(10),需要求得f(9)和f(8)。同样,要求得f(9),要先求得f(8)和f(7)……我们用树形结构来表示这种依赖关系
在这棵树中有很多结点会重复的,而且重复的结点数会随着n的增大而急剧增加。这意味这计算量会随着n的增大而急剧增大。事实上,用递归方法计算的时间复杂度是以n的指数的方式递增的,时间复杂度约等于O(2^n)
空间复杂度分析
在方法一的基础上改进
其实改进的方法并不复杂。上述方法之所以慢是因为重复的计算太多,只要避免重复计算就行了。比如我们可以把已经得到的数列中间项保存起来,如果下次需要计算的时候我们先查找一下,如果前面已经计算过了就不用再次计算了。算法步骤如下
一目了然,O(1) 约等于O(1)
这个是我目前见过最流弊的方式,但是前提你得先会用公式
时间复杂度是O(logn),就问你流弊不流弊。在介绍这种方法之前,先介绍一个数学公式:
我们以求解f(10)作为例子来分析递归求解的过程。要求得f(10),需要求得f(9)和f(8)。同样,要求得f(9),要先求得f(8)和f(7)……我们用树形结构来表示这种依赖关系
在这棵树中有很多结点会重复的,而且重复的结点数会随着n的增大而急剧增加。这意味这计算量会随着n的增大而急剧增大。事实上,用递归方法计算的时间复杂度是以n的指数的方式递增的,时间复杂度约等于O(2^n)
空间复杂度分析
在方法一的基础上改进
其实改进的方法并不复杂。上述方法之所以慢是因为重复的计算太多,只要避免重复计算就行了。比如我们可以把已经得到的数列中间项保存起来,如果下次需要计算的时候我们先查找一下,如果前面已经计算过了就不用再次计算了。算法步骤如下
一目了然,O(1) 约等于O(1)
这个是我目前见过最流弊的方式,但是前提你得先会用公式
时间复杂度是O(logn),就问你流弊不流弊。在介绍这种方法之前,先介绍一个数学公式:
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询