为什么log的导数是1/2?
1个回答
展开全部
log导数是指:log函数的局部性质,具体表现公式如下:
1、y=f[g(x)],y'=f'[g(x)]·g'(x)。
2、y=u/v,y'=(u'v-uv')/v^2。
3、y=f(x)的反函数是x=g(y),则有y'=1/x'。
导数作为函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。
相关信息:
对于可导的函数f(x),x↦f'(x)也是一个函数,称作f(x)的导函数(简称导数)。寻找已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也来源于极限的四则运算法则。反之,已知导函数也可以反过来求原来的函数,即不定积分。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询