完全平方公式
完全平方公式(数学公式)(Perfect square trinomial),(a+b)²=a²+2ab+b²与(a-b)²=a²-2ab+b²是应用于数学领域的平方公式,该公式是进行代数运算与变形的重要的知识基础,是因式分解中常用到的公式。
中文名:完全平方公式
外文名:Perfect square trinomial
学科:数学
公式:(a±b)²=a²±2ab+b²
1.定义
两数和的平方,等于它们的平方和加上它们的积的2倍。
(a+b)²=a²﹢2ab+b²
两数差的平方,等于它们的平方和减去它们的积的2倍。
﹙a-b﹚²=a²﹣2ab+b²
该公式是进行代数运算与变形的重要的知识基础,是因式分解中常用到的公式。该知识点重点是对完全平方公式的熟记及应用。难点是对公式特征的理解(如对公式中积的一次项系数的理解等)。
2.学习方法
两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。叫做完全平方公式.为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式。
3.公式口诀
首平方,尾平方,首尾相乘放中间。
或首平方,尾平方,两数二倍在中央。
也可以是:首平方,尾平方,积的二倍放中央。
同号加、异号减,负号添在异号前。(可以背下来)
即(a+b)²=a²+2ab+b²
(a-b)²=a²-2ab+b²(注意:后面一定是加号)
2021-01-25 广告
(a+b)²=a²+2ab+b²、(a-b)²=a²-2ab+b²。
完全平方公式是一个数学名词,一个常用的简便计算公式。完全平方式是指如果满足对于一个具有若干个简单变元的整式A,如果存在另一个实系数整式B,使A=B^2的条件话,则称A是完全平方式。
两个小正方形的边长分别为a和b,两个长方形的长都是b,宽为a,根据面积公式相等,可以得出。这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。该公式是进行代数运算与变形的重要的知识基础,是因式分解中常用到的公式。
完全平方公式口诀:
首平方,尾平方,首尾相乘放中间。或首平方,尾平方,两数二倍在中央。也可以是首平方,尾平方,积的二倍放中央。
完全平方公式推导过程:(a+b)²=(a+b)(a+b)=a*a+b*a+a*b+b*b (展开,各项相乘)=a²+2ab+b² (合并同专类属项)。(a-b)²=(a-b)(a-b)=a*a+a*(-b)+(-b)*a+(-b)*(-b)=a²-2ab+b²。