一阶线性微分方程
1个回答
展开全部
形如y'+P(x)y=Q(x)的微分方程称为一阶线性微分方程,Q(x)称为自由项。
形如y'+P(x)y=Q(x)的微分方程称为一阶线性微分方程,Q(x)称为自由项。一阶,指的是方程中关于Y的导数是一阶导数。线性,指的是方程简化后的每一项关于y、y'的指数为1。
当Q(x)≡0时,方程为y'+P(x)y=0,这时称方程为一阶齐次线性微分方程。(因为y'是关于y及其各阶导数的1次的,P(x)y是一次项,它们同时又是关于x及其各阶导数的0次项,所以为齐次。)
当Q(x)≠0时,称方程y'+P(x)y=Q(x)为一阶非齐次线性微分方程。(由于Q(x)中未含y及其导数,所以是关于y及其各阶导数的0次项,因为方程中含一次项又含0次项,所以为非齐次。)
一阶线性微分方程可以写成y’+p(x)y=g(x)。形如y' P(x)y=Q(x)的线性微分方程称之为一阶线性微分方程,Q(x)称为随意项。一阶指的是方程中关于Y的导数是一阶导数。线性,指的是方程简化后的每一项关于y、y’的次数为0或1。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询