二项式定理

 我来答
专属昵称11dy
2022-11-23 · TA获得超过631个赞
知道大有可为答主
回答量:4256
采纳率:84%
帮助的人:99.7万
展开全部

二项式定理(英语:Binomial theorem),又称牛顿二项式定理,由艾萨克·牛顿于1664年、1665年期间提出。该定理给出两个数之和的整数次幂诸如 展开为类似 项之和的恒等式。二项式定理可以推广到任意实数次幂,即广义二项式定理。

二项式定理,又称牛顿二项式定理,由艾萨克·牛顿于1664-1665年提出。

公式为:(a+b)^n=C(n,0)a^n+C(n,1)a^(n-1)b+...+C(n,i)a^(n-i)b^i+...+C(n,n)b^n

式中,C(n,i)表示从n个元素中任取i个的组合数=n!/(n-i)!i!

此定理指出:

1、(a+b)^n的二项展开式共有n+1项,其中各项的系数Cnr(r∈{0,1,2,……,n})叫做二项式系数。

等号右边的多项式叫做二项展开式。

2、二项展开式的通项公式(简称通项)为C(n,r)(a)^(n-r)b^r,用Tr+1表示(其中"r+1"为角标),即通项为展开式的第r+1项(如下图),即n取i的组合数目。

因此系数亦可表示为杨辉三角或帕斯卡三角形。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式