如何求数列极限

 我来答
若鱼Zi
2022-11-23 · TA获得超过124个赞
知道小有建树答主
回答量:473
采纳率:0%
帮助的人:7.8万
展开全部

如何求数列极限如下:

设 {Xn} 为实数数列,a 为定数.若对任给的正数 ε,总存在正整数N,使得当 n>N 时有∣Xn-a∣<ε 则称数列{Xn} 收敛于a,定数 a 称为数列 {Xn} 的极限。

读作"当 n 趋于无穷大时,{Xn} 的极限等于 或 趋于 a"。

若数列 {Xn} 没有极限,则称 {Xn} 不收敛,或称 {Xn} 为发散数列。

该定义常称为数列极限的 ε-N定义。

对于收敛数列有以下两个基本性质,即收敛数列的唯一性和有界性。

定理1:如果数列{Xn}收敛,则其极限是唯一的。

定理2:如果数列{Xn}收敛,则其一定是有界的。即对于一切n(n=1,2……),总可以找到一个正数M,使|Xn|≤M。

任意性:

不等式|Xn-a|<ε刻划了Xn与a的无限接近程度,ε愈小,表示接近得愈好;而正数ε可以任意地小,说明Xn与a可以接近到任何程度。然而,尽管ε有其任意性,但一经给出正整数N,ε就暂时地被确定下来,以便依靠它来求出ε,又ε既是任意小的正数。

那么ε/2,ε的平方等等同样也是任意小的正数,因此定义中不等式|Xn-a|<ε中的 ε可用ε/2,ε的平方等来代替。同时,正由于ε是任意小正数,我们可限定ε小于一个确定的正数。另外,定义1中的|Xn-a|<ε也可改写成|Xn-a|≦ε。

折叠相应性:

一般说,N随ε的变小而变大,由此常把N写作N(ε),来强调N是依赖于ε的;但这并不意味着N是由ε所唯一确定的,因为对给定的 。

比如当N=100时,能使得当n>N时有|xn-a|<ε,则N=101或更大时此不等式自然也成立.这里重要的是N的存在性,而不在于它的值的大小.另外,定义1中的,n>N也可改写成n≧N。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式