求证 tanX+tanY/tanX-tanY=sin(X+Y)/sin(X+Y)
2个回答
展开全部
(tanX+tanY)/(tanX-tanY)
=(sinX/cosX+sinY/cosY)/[sinX/cosX-sinX/cosY)
分子=(sinX/cosX)+(sinY/cosY)
=(sinXcosY+cosXsinY)/(cosXcosY)
=sin(X+Y)/(cosXcosY)
分母=(sinX/cosX)-(sinY/cosY)
=(sinXcosY-cosXsinY)/(cosXcosY)
=sin(X-Y)/(cosXcosY)
分子除以分母,消去共同的cosXcosY
=sin(X+Y)/sin(X-Y)
=(sinX/cosX+sinY/cosY)/[sinX/cosX-sinX/cosY)
分子=(sinX/cosX)+(sinY/cosY)
=(sinXcosY+cosXsinY)/(cosXcosY)
=sin(X+Y)/(cosXcosY)
分母=(sinX/cosX)-(sinY/cosY)
=(sinXcosY-cosXsinY)/(cosXcosY)
=sin(X-Y)/(cosXcosY)
分子除以分母,消去共同的cosXcosY
=sin(X+Y)/sin(X-Y)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询