在同一个圆中扇形的大小与这个扇形的什么的大小有关
圆心角
圆心角是指在中心为O的圆中,过弧AB两端的半径构成的∠AOB, 称为弧AB所对的圆心角。圆心角等于同一弧所对的圆周角的二倍。
定理
圆心角的度数等于它所对的弧的度数。
与弧、弦、弦心距的关系
在同圆或等圆中,若两个圆心角、两条弧、两条弦、两条弦的弦心距中有一组量相等,则对应的其余各组量也相等。
理解:(定义)
(1)等弧对等圆心角
(2)把顶点在圆心的周角等分成360份时,每一份的圆心角是1°的角.
(3)因为在同圆中相等的圆心角所对的弧相等,所以整个圆也被等分成360份,这时,把每一份这样得到的弧叫做1°的弧.
(4)圆心角的度数和它们对的弧的度数相等.
推论:
在同圆或等圆中,如果(1)两个圆心角,(2)两条弧,(3)两条弦(4)两条弦上的弦心距中,有一组量相等,那么它们所对应的其余各组量都分别相等
与圆周角关系
在同圆或等圆中,同弧或同弦所对的圆周角等于二分之一的圆心角。
定理证明:证明。
作直径CD,
∵OA = OB = OC
∴∠OBC = ∠OCB ∠OAC = ∠OCA
∴∠BOD = ∠OBC+∠OCB = 2∠BCD
即:∠BCD = 1/2∠BOD
同理:∠ACD = 1/2∠AOD
∴∠ACB = ∠BCD - ∠ACD
= 1/2(∠BOD - ∠AOD)
= 1/2∠AOB