闭区间上连续函数的介值定理
1个回答
展开全部
介值定理,又名中间值定理,是闭区间上连续函数的性质之一,闭区间连续函数的重要性质之一。
如果一个连续函数在区间内有相反符号的值,那么它在该区间内有根存在(博尔扎诺定理)。
历史
对于上面的u = 0,该声明也称为博尔扎诺定理。这个定理在1817年被伯纳德·博尔扎诺(Bernard Bolzano)首次证明。
奥古斯丁-路易·柯西在1821年提供了一个证据。两者的灵感来自于对约瑟夫·路易斯拉格朗日函数的分析正式化的目标。连续函数具有中间值的想法早有起源。西蒙·斯蒂文通过提供用于构造解的十进制扩展的算法,证明了多项式的介值定理(以立方为例)。
介值定理定义是:介值定理,又名中间值定理,是闭区间上连续函数的性质之一,闭区间连续函数的重要性质之一。在数学分析中,介值定理表明。
如果定义域为[a,b]的连续函数f,那么在区间内的某个点,它可以在f(a)和f(b)之间取任何值,也就是说,介值定理是在连续函数的一个区间内的函数值肯定介于最大值和最小值之间。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询