
证明三角形内角和为180度的方法
验证“三角形的内角和是180度”,常见的有三种方法:
1、用量角器量出三个角的度数,然后加起来看是不是180度(简称“测量求和法”)
2、将三角形三个角剪下来,再将它们拼在一起看能不能组成平角(简称“剪拼法”)
3、将三个角折起来拼在一起,看能不能组成平角(简称“折拼法”)。
对于这三种方法中,测量求和法的优点是:接近学生的思维水平,课堂上学生很容易想到,也很容易理解;缺点是:“测量”存在着误差,因此测得的三个角的度数加起来往往都不是180度。
这使得测量结果非但不能验证结论,相反却易给人造成“三角形内角和不是180度”的错误印象。
相关知识:
1 、在平面上三角形的内角和等于180°(内角和定理)。
2 、在平面上三角形的外角和等于360° (外角和定理)。
3、 在平面上三角形的外角等于与其不相邻的两个内角之和。
推论:三角形的一个外角大于任何一个和它不相邻的内角。
4、 一个三角形的三个内角中最少有两个锐角。
5、 在三角形中至少有一个角大于等于60度,也至少有一个角小于等于60度。
6 、三角形任意两边之和大于第三边,任意两边之差小于第三边。
7、 在一个直角三角形中,若一个角等于30度,则30度角所对的直角边是斜边的一半。
8、直角三角形的两条直角边的平方和等于斜边的平方(勾股定理)。
勾股定理逆定理:如果三角形的三边长a,b,c满足a²+b²=c² ,那么这个三角形是直角三角形。
广告 您可能关注的内容 |