泰勒公式怎么用
实际应用中,泰勒公式需要截断,只取有限项,一个函数的有限项的泰勒级数叫做泰勒展开式。泰勒公式的余项可以用于估算这种近似的误差。
泰勒展开式的重要性体现在以下五个方面: 幂级数的求导和积分可以逐项进行,因此求和函数相对比较容易。
一个解析函数可被延伸为一个定义在复平面上的一个开片上的解析函数,并使得复分析这种手法可行。 泰勒级数可以用来近似计算函数的值,并估计误差。
证明不等式。 求待定式的极限。
一、中值定理
由导数的定义可知,当函数
在点处可导时,在点的邻域内有 因为 是一个无穷小量,故有
。这是在对函数进行局部线性化处理时常用的公式之一。
从几何上看,它是用切线来代替曲线的。然而,这样的近似是比较粗糙的,而且只在点的附近才有近似的意义为了改善上述不足,使得近似替代更加精密,数学家们在柯西中值定理的基础上,推导出了泰勒中值定理(泰勒公式)
。
二、公式余项
泰勒公式的余项有两类:一类是定性的皮亚诺余项,另一类是定量的拉格朗日余项。这两类余项本质相同,但是作用不同。
一般来说,当不需要定量讨论余项时,可用皮亚诺余项(如求未定式极限及估计无穷小阶数等问题);当需要定量讨论余项时,要用拉格朗日余项(如利用泰勒公式近似计算函数值)
。
三、几何意义
泰勒公式的几何意义是利用多项式函数来逼近原函数,由于多项式函数可以任意次求导,易于计算,且便于求解极值或者判断函数的性质,因此可以通过泰勒公式获取函数的信息,同时,对于这种近似,必须提供误差分析,来提供近似的可靠性。