矩阵的性质和运算法则
展开全部
矩阵的性质和运算法则如下:
一、矩阵的定义
在数学中,矩阵是一个依照长方阵列摆放的复数或实数调集,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首要提出。一个m×n的矩阵是一个由m行n列元素排列成的矩形阵列,矩阵里的元素可以是数字、符号或数学式。
二、矩阵的性质
运算性质满足结合律和分配律。转置矩阵的行列式不变。将矩阵的行列互换得到的新矩阵称为转置矩阵,转置矩阵的行列式不变。
数值分析的主要分支致力于开发矩阵计算的有效算法,矩阵分解方法简化了理论和实际的计算。针对特定矩阵结构(如稀疏矩阵和近角矩阵)定制的算法在有限元方法和其他计算中加快了计算。
三、矩阵的运算法则
矩阵的基本运算公式加法,减法,数乘,转置,共轭和共轭转置。“矩阵的转置是矩阵的一种运算,在矩阵的所有运算法则中占有重要地位。”
总的来说,矩阵的根本意义是为了在某些应用上方便计算。例如在计算机图形学中,矩阵运算常常与坐标的级联变换有关,其中最著名的四大矩阵投影、平移、旋转、缩放矩阵。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询