5个回答
展开全部
y=sinx对称轴为x=k∏+ ∏/2 (k为整数),对称中心为(k∏,0)(k为整数)。
y=cosx对称轴为x=k∏(k为整数),对称中心为(k∏+ ∏/2,0)(k为整数)。
y=tanx对称中心为(k∏,0)(k为整数),无对称轴。
这是要记忆的。
对于正弦型函数y=Asin(ωx+Φ),令ωx+Φ = k∏+ ∏/2 解出x即可求出对称轴,令ωx+Φ = k∏ 解出的x就是对称中心的横坐标,纵坐标为0。(若函数是y=Asin(ωx+Φ)+ k 的形式,那此处的纵坐标为k )
余弦型,正切型函数类似。
y=cosx对称轴为x=k∏(k为整数),对称中心为(k∏+ ∏/2,0)(k为整数)。
y=tanx对称中心为(k∏,0)(k为整数),无对称轴。
这是要记忆的。
对于正弦型函数y=Asin(ωx+Φ),令ωx+Φ = k∏+ ∏/2 解出x即可求出对称轴,令ωx+Φ = k∏ 解出的x就是对称中心的横坐标,纵坐标为0。(若函数是y=Asin(ωx+Φ)+ k 的形式,那此处的纵坐标为k )
余弦型,正切型函数类似。
东莞大凡
2024-11-14 广告
2024-11-14 广告
标定板认准大凡光学科技,专业生产研发厂家,专业从事光学影像测量仪,光学投影测量仪.光学三维测量仪,光学二维测量仪,光学二维测量仪,光学三维测量仪,光学二维测量仪.的研发生产销售。东莞市大凡光学科技有限公司创立于 2018 年,公司总部坐落于...
点击进入详情页
本回答由东莞大凡提供
展开全部
正弦,余弦可以令f(x)=+1或-1,解出x的值即对称轴。令f(x)=0,解出即对称中心。正切令f(x)=0为对称中心,没有对称轴
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
三角函数的对称中心位于函数的零点处,对称轴位于函数的最值点。
这样,问题就转化成求三角函数的零点和最值点,如:
f(x)=Asin(ωx+φ)
零点:f(x)=Asin(ωx+φ)=0,将ωx+φ看成整体,ωx+φ=kπ→x=(kπ-φ)/ω→对称中心((kπ-φ)/ω,0)
最值点f(x)=Asin(ωx+φ)=±A,将ωx+φ看成整体,ωx+φ=2kπ±π/2→x=(2kπ±π/2-φ)/ω→对称轴x=(2kπ±π/2-φ)/ω
这样,问题就转化成求三角函数的零点和最值点,如:
f(x)=Asin(ωx+φ)
零点:f(x)=Asin(ωx+φ)=0,将ωx+φ看成整体,ωx+φ=kπ→x=(kπ-φ)/ω→对称中心((kπ-φ)/ω,0)
最值点f(x)=Asin(ωx+φ)=±A,将ωx+φ看成整体,ωx+φ=2kπ±π/2→x=(2kπ±π/2-φ)/ω→对称轴x=(2kπ±π/2-φ)/ω
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
先找出正弦和余弦的对称轴和对称中心,直接画图像看
然后将小括号里的看成整体
第一题:对称轴令2x+π/3=2kπ+π/2,所以x=kπ+π/12
其他的同理可证
这个方法在数学中称作:整体代换法
然后将小括号里的看成整体
第一题:对称轴令2x+π/3=2kπ+π/2,所以x=kπ+π/12
其他的同理可证
这个方法在数学中称作:整体代换法
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询