函数极限什么时候不存在?
1个回答
展开全部
极限不存在有三种方法:
1.极限为无穷,很好理解,明显与极限存在定义相违。
2.左右极限不相等,例如分段函数。
3.没有确定的函数值,例如lim(sinx)从0到无穷。
极限存在与否条件:
1、结果若是无穷小,无闹脊租穷小就用0代入,0也液兆是极限。
2、若是分子的极限是无穷小,分母的极限不是无穷小,答案就是0,整体的极限存在。
3、如果分子的极限不是无穷小,而分母的极限是无穷小,答案不是正无穷野信大,就是负无穷大,整体的极限不存在。
4、若分子分母各自的极限都是无穷小,那就必须用罗毕达方法确定最后的结果。
函数极限
函数极限是高等数学最基本的概念之一,导数等概念都是在函数极限的定义上完成的。函数极限性质的合理运用。常用的函数极限的性质有函数极限的唯一性、局部有界性、保序性以及函数极限的运算法则和复合函数的极限等等。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询