如何证明幂级数是收敛的?
展开全部
常用的全面的幂级数展开公式:f(x)=1/(2+x-x的平方)
因式分解
={1/(x+1)+1/[2(1-x/2)]}/3
展开成x的幂级数
=(n=0到∞)∑[(-x)^n+
(x/2)^n/2]
收敛域茄洞-1<x<1
绝对收敛级数:
一个绝对收敛级数的正数项与负数项所组成的级颤歼枯数都是收敛的。一个条件收敛级数的正数项与负数项所组成的级数都是发散的。
对于任意给定的正数tol,可以找到合适的区间(譬如坐标绝对值充分小),使得这个区间内任意三个改带点组成的三角形面积都小于tol。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询