三角函数的公式有那些?如何运用?
展开全部
公式一: 设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)=sinα (k∈Z)
cos(2kπ+α)=cosα (k∈Z)
tan(2kπ+α)=tanα (k∈Z)
cot(2kπ+α)=cotα(k∈Z)
公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)= -sinα
cos(π+α)=-cosα
tan(π+α)= tanα
cot(π+α)=cotα
公式三: 任意角α与-α的三角函数值之间的关系(利用 原函数 奇偶性):
sin(-α)=-sinα
cos(-α)= cosα
tan(-α)=-tanα
cot(-α)=-cotα
公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sin(π-α)= sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:
sin(2π-α)=-sinα
cos(2π-α)= cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
公式六: π/2±α与α的三角函数值之间的关系:
sin(π/2+α)=cosα
sin(π/2-α)=cosα
cos(π/2+α)=-sinα
cos(π/2-α)=sinα
tan(π/2+α)=-cotα
tan(π/2-α)=cotα
cot(π/2+α)=-tanα
cot(π/2-α)=tanα
推算公式:3π/2 ± α与α的三角函数值之间的关系:
sin(3π/2+α)=-cosα
sin(3π/2-α)=-cosα
cos(3π/2+α)=sinα
cos(3π/2-α)=-sinα
tan(3π/2+α)=-cotα
tan(3π/2-α)=cotα
cot(3π/2+α)=-tanα
cot(3π/2-α)=tanα
sin(2kπ+α)=sinα (k∈Z)
cos(2kπ+α)=cosα (k∈Z)
tan(2kπ+α)=tanα (k∈Z)
cot(2kπ+α)=cotα(k∈Z)
公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)= -sinα
cos(π+α)=-cosα
tan(π+α)= tanα
cot(π+α)=cotα
公式三: 任意角α与-α的三角函数值之间的关系(利用 原函数 奇偶性):
sin(-α)=-sinα
cos(-α)= cosα
tan(-α)=-tanα
cot(-α)=-cotα
公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sin(π-α)= sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:
sin(2π-α)=-sinα
cos(2π-α)= cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
公式六: π/2±α与α的三角函数值之间的关系:
sin(π/2+α)=cosα
sin(π/2-α)=cosα
cos(π/2+α)=-sinα
cos(π/2-α)=sinα
tan(π/2+α)=-cotα
tan(π/2-α)=cotα
cot(π/2+α)=-tanα
cot(π/2-α)=tanα
推算公式:3π/2 ± α与α的三角函数值之间的关系:
sin(3π/2+α)=-cosα
sin(3π/2-α)=-cosα
cos(3π/2+α)=sinα
cos(3π/2-α)=-sinα
tan(3π/2+α)=-cotα
tan(3π/2-α)=cotα
cot(3π/2+α)=-tanα
cot(3π/2-α)=tanα
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询