为什么实对称矩阵一定能对角化?
1个回答
展开全部
1、实对称矩阵A的不同特征值对应的特征向量是正交的。
2、实对称矩阵A的特征值都是实数,特征向量都是实向量。
3、n阶实对称矩阵A必可相似对角化,且相似对角阵上的元素即为矩阵本身特征值。
4、若A具有k重特征值λ0 必有k个线性无关的特征向量,或者说秩r(λ0E-A)必为n-k,其中E为单位矩阵。
5、实对称矩阵A一定可正交相似对角化。
扩展资料
代数图论研究用到的无号拉普拉斯矩阵就是实对称矩阵。实对称矩阵一定能对角化这个问题不是那么明显就能得到答案的。
A是否可以对角化,存在一个可逆矩阵P使得P^(-1)AP成为对角矩阵。一个自然的推论,如果A有n个不同的特征值,那么A一定可以对角化。然而实对称矩阵却不一定拥有n个不同的特征值。证明需要用到不变子空间。
参考资料来源:百度百科-实对称矩阵
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询