二重积分的上下界怎么求?
1个回答
展开全部
例如:对t求导∫d(x)∫arctanH(y)dy=?
其中第一个∫上限是t 下限是1
第二个∫上限是f(x),下限是0
要过程方法
请写下答案
假设∫arctanH(y)dy=F(x)
则可知∫d(x)∫arctanH(y)dy=∫F(x)dt
所以求导可知d(∫F(x)dt)/dt=F(t)∫arctanH(y)dy=F(x)则F(t)=∫arctanH(y)dy
上限是f(t) 下限是0
所以对t求导∫d(x)∫arctanH(y)dy=
为 =∫arctanH(y)dy
上限是f(t),下限是0
扩展资料:
二重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心,平面薄片转动惯量,平面薄片对质点的引力等等。此外二重积分在实际生活,比如无线电中也被广泛应用。
在空间直角坐标系中,二重积分是各部分区域上柱体体积的代数和,在xoy平面上方的取正,在xoy平面下方的取负。某些特殊的被积函数f(x,y)的所表示的曲面和D底面所为围的曲顶柱体的体积公式已知,可以用二重积分的几何意义的来计算。
参考资料来源:百度百科-二重积分
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询