证明对所有正整数 r, k 及 n (其中 n ≥ r) :
展开全部
因 nCr = (n+1)C(r+1) - nC(r+1)
所以 nC(r-1) + (n+1)C(r-1) + (n+2)C(r-1) + ... + (n+k)C(r-1) = [(n+1)Cr - nCr ] + [(n+2)Cr - (n+1)Cr] + [(n+3)Cr - (n+2)Cr] + ... + [(n+k)Cr - (n+k-1)Cr] + [ (n+k+1)Cr - (n+k)Cr] = (n+k+1)Cr - nCr
所以 nC(r-1) + (n+1)C(r-1) + (n+2)C(r-1) + ... + (n+k)C(r-1) = [(n+1)Cr - nCr ] + [(n+2)Cr - (n+1)Cr] + [(n+3)Cr - (n+2)Cr] + ... + [(n+k)Cr - (n+k-1)Cr] + [ (n+k+1)Cr - (n+k)Cr] = (n+k+1)Cr - nCr
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询