拉格朗日定理如何理解?

 我来答
mattdu2006
2023-01-01 · TA获得超过761个赞
知道答主
回答量:196
采纳率:75%
帮助的人:6.9万
展开全部

[拉格朗日(Lagrange)中值定理]若函数f(x)满足条件:

(1)在闭区间[a,b]上连续;

(2)在开区间(a,b)内可导,则在(a,b)内至少存在一点ξ,使得

向左转|向右转

显然,罗尔定理是拉格朗日中值定理当f(a)=f(b)时的特殊情形,拉格朗日中值定理是罗尔定理的推广。

向左转|向右转

扩展资料

推论1:如果函数f(x)在区间(a,b)内任意一点的导数f'(x)都等于零,那么函数f(x)在(a,b)内是一个常数。

证:设x1,x2是区间(a,b)内的任意两点,且x1<x2,则函数f(x)在区间[x1,x2]上满足拉格朗日终值定理的条件,所以在(x1,x2)内至少存在一点ξ,使得f(x2)-f(x1)=f'(ξ)(x2-x1).

由假设知f'(ξ)=0,所以f(x1)=f(x2).

由于x1,x2是(a,b)内的任意两点,所以函数f(x)在(a,b)内的函数值总是相等的,即函数f(x)在(a,b)内是一个常数。
由此可知,函数f(x)在(a,b)内是一个常数的充分必要条件是在(a,b)内f'(x)=0.

推论2:如果函数f(x)与g(x)在区间(a,b)内每一点的导数f'(x)与g'(x)都相等,则这两个函数在区间(a,b)内至多相差一个常数,即f(x)=g(x)+C,x∈(a,b).这里C是一个确定的常数。

参考资料来源:百度百科-拉格朗日中值定理

Sievers分析仪
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准... 点击进入详情页
本回答由Sievers分析仪提供
桎皓sky
2023-02-02
知道答主
回答量:13
采纳率:0%
帮助的人:3011
展开全部
拉格朗日定理,数理科学术语,存在于多个学科领域中,分别为:微积分中的拉格朗日中值定理;数论中的四平方和定理;群论中的拉格朗日定理 (群论)。
微积分
在微积分中,拉格朗日中值定理是罗尔中值定理的推广,同时也是柯西中值定理的特殊情形。
1.文字叙述
如果函数 满足:1) 在闭区间 上连续;2) 在开区间 内可导;那么在 内至少有一点 ,使等式

成立。
2.逻辑语言的叙述
若函数 满足:



图1.拉格朗日中值定理的几何意义
3.证明
令 ,那么[1]
1) 在 上连续,
2) 在 上可微(导),
3 ,由罗尔定理,存在一点 ,使得 。即 。
数论
1.内容
四平方和定理(Lagrange's four-square theorem) 说明每个正整数均可表示为4个整数的平方和。它是费马多边形数定理和华林问题的特例。注意有些整数不可表示为3个整数的平方和,例如7。
2.历史
1. 1743年,瑞士数学家欧拉发现了一个著名的恒等式:。根据上述欧拉恒等式或四元数的概念可知如果正整数 和 能表示为4个整数的平方和,则其乘积 也能表示为4个整数的平方和。于是为证明原命题只需证明每个素数可以表示成4个整数的平方和即可。
2. 1751年,欧拉又得到了另一个一般的结果。即对任意奇素数 ,同余方程 必有一组整数解 满足 , (引理一)。
至此,证明四平方和定理所需的全部引理已经全部证明完毕。此后,拉格朗日和欧拉分别在1770年和1773年作出最后的证明。
群论
拉格朗日定理是群论的定理,利用陪集证明了子群的阶一定是有限群的阶的约数值。
1.定理内容
叙述:设H是有限群 的子群,则 的阶整除 的阶。
定理的证明是运用 在 中的左陪集。 在 中的每个左陪集都是一个等价类。将 作左陪集分解,由于每个等价类的元素个数都相等,都等于 的元素个数( 是 关于 的左陪集),因此 的阶(元素个数)整除 的阶,商是 在 中的左陪集个数,叫做 对 的指数,记作 。
陪集的等价关系
定义二元关系 : 。下面证明它是一个等价关系。
1) 自反性: ;
2) 对称性: ,因此 ,因此 ;
3) 传递性: ,因此 ,因此 。
可以证明, 。因此左陪集是由等价关系 确定的等价类。
拉格朗日定理说明,如果商群 存在,那么它的阶等于 对 的指数 。

上述写法在为无限群时也成立。
2.推论
由拉格朗日定理可立即得到:由有限群 中一个元素 的阶数整除群 的阶(考虑由 生成的循环群)。
3.逆命题
拉格朗日定理的逆命题并不成立。给定一个有限群 和一个整除 的阶的整数 , 并不一定有阶数为 的子群。最简单的例子是4次交替群 ,它的阶是12,但对于12的因数6, 没有6阶的子群。对于这样的子群的存在性,柯西定理和西洛定理给出了一个部分的回答。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式