设z=z(x,y)是由方程ax+by+cz=F(x^2+y^2+z^2)所确定的函数,求证:(cy-bz)z'...x+?

 我来答
大沈他次苹0B
2022-09-24 · TA获得超过7342个赞
知道大有可为答主
回答量:3059
采纳率:100%
帮助的人:180万
展开全部
ax+by+cz=F(x^2+y^2+z^2)
两边对x求导得:a+c∂z/∂x=F‘(x^2+y^2+z^2)(2x+2z∂z/∂x)
∂z/∂x= [F‘(x^2+y^2+z^2)(2x)-a]/(c-F‘(x^2+y^2+z^2)(2z))
两边对y求导得:b+c∂z/∂y=F‘(x^2+y^2+z^2)(2y+2z∂z/∂y)
∂z/∂x= [F‘(x^2+y^2+z^2)(2y)-b]/(c-F‘(x^2+y^2+z^2)(2z))
所以:(cy-bz)∂z/∂x+(az-cx)∂z/∂y
=(cy-bz)[F‘(x^2+y^2+z^2)(2x)-a]/(c-F‘(x^2+y^2+z^2)(2z))
+(az-cx)[F‘(x^2+y^2+z^2)(2y)-b]/(c-F‘(x^2+y^2+z^2)(2z))
={(-cya+baz)+(-baz+bcx)+2(cxy-bxz+ayz-cxy)[F‘(x^2+y^2+z^2)(2y)]}/(c-F‘(x^2+y^2+z^2)(2z))
={c(bx-ay)-2z(bx-ay))[F‘(x^2+y^2+z^2)(2y)]}/(c-F‘(x^2+y^2+z^2)(2z))
=bx-ay,2,设z=z(x,y)是由方程ax+by+cz=F(x^2+y^2+z^2)所确定的函数,求证:(cy-bz)z'...x+(az-cx)z'...y=bx-ay,其中
设z=z(x,y)是由方程ax+by+cz=F(x^2+y^2+z^2)所确定的函数,求证:
(cy-bz)z'...x+(az-cx)z'...y=bx-ay,其中z'...x,z'...y分别表示z(x,y)
关于x,y的偏导数.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式