函数连续和极限存在的关系

 我来答
秃头小李头
2022-12-15 · TA获得超过406个赞
知道小有建树答主
回答量:792
采纳率:100%
帮助的人:74.6万
展开全部
  有极限不一定连续,但是连续一定有极限。一个函数连续必须有两个条件,一个是在此处有定义,另外一个是在此区间内要有极限,因此说函数有极限是函数连续的必要不充分条件。

  函数y=f(x)当自变量x的变化很小时,所引起的因变量y的变化也很小。例如气温随时间变化,只要时间变化很小,气温的变化也是很小的;又如自由落体的位移随时间变化,只要时间变化足够短,位移的变化也是很小的,对于这种现象,我们说因变量关于自变量是连续变化的,可用极限给出严格描述,设函数y=f(x)在x0点附近有定义,如果有lim(x->x0)f(x)=f(x0),则称函数f在x0点连续。如果定义在区间I上的函数在每一点x∈I都连续,则说f在I上连续,此时,它在直角坐标系中的图像是一条没有断裂的连续曲线。

  在某点连续的有限个函数经有限次和,差,积,商(分母不为0)运算,结果仍是一个在该点连续的函数。连续单调递增(递减)函数的反函数,也连续单调递增(递减)。连续函数的复合函数是连续的。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式