
高一数学,急求
设x1,x2分别为一元二次方程ax2(平方)+bx+c=0和-ax2(平方)+bx+c=0的一个根,且x1不等于x2,x1不等于0,x2不等于0,求证:方程a/2x2(平...
设x1,x2分别为一元二次方程ax2(平方)+bx+c=0和-ax2(平方)+bx+c=0的一个根,且x1不等于x2,x1不等于0,x2不等于0,求证:方程a/2x2(平方)+bx+c=0有且只有一根,介于x1和x2间
展开
1个回答
2008-11-20
展开全部
x1是ax^2+bx+c=0的一个根
所以ax1^2+bx1+c=0
所以bx1+c=-ax1^2
x2是-ax^2+bx+c=0的一个根
所以-ax2^2+bx2+c=0
所以bx2+c=ax2^2
令y=f(x)=a/2x^2+bx+c
则f(x1)*f(x2)=(a/2x1^2+bx1+c)(a/2x2^2+b2x+c)
=(a/2x1^2-ax1^2)(a/2x2^2+ax2^2)
=-(3/4)*a^2x1^2x2^2
因为x1不等与0,x2不等于0,一元二次方程所以a不等于0
所以a^2x1^2x2^2>0
所以f(x1)*f(x2)=-(3/4)*a^2x1^2x2^2<0
就是说f(x1)和f(x2)一正一负
而且f(x)是连续的
同时x1不等于x2
所以必有一个x0在x1和x2之间
使得f(x0)=0
所以x1和x2之间一定有解
若x1和x2之间有两个解
则f(x1)和f(x2)必然同为正或同为负
所以方程f(x)=0有且仅有一个根介于x1和x2之间
=================================================
如果(a/2)x2+bx+c=0必有一根在x1与x2之间
则(ax1^2/2+bx1+c)(ax2^2/2+bx2+c)<0
只要证明这个式子即可。
ax1^2/2+bx1+c=ax1^2+bx1+c-ax1^2/2
因为x1为ax^2+bx+c=0的根
所以ax1^2+bx1+c=0
所以ax1^2/2+bx1+c=-ax1^2/2
同理ax2^2/2+bx2+c=3ax2^2/2
所以(ax1^2/2+bx1+c)(ax2^2/2+bx2+c)
=(-ax1^2/2)(3ax2^2/2)
=-3a^2x1^2x2^2/4
因为x1,x2是非零实根,且ax^2+bx+c=0和-ax^2+bx+c=0是二次方程
所以x1,x2,a都不等于0
所以-3a^2x1^2x2^2/4<0,即
(ax1^2/2+bx1+c)(ax2^2/2+bx2+c)<0
命题得证
所以ax1^2+bx1+c=0
所以bx1+c=-ax1^2
x2是-ax^2+bx+c=0的一个根
所以-ax2^2+bx2+c=0
所以bx2+c=ax2^2
令y=f(x)=a/2x^2+bx+c
则f(x1)*f(x2)=(a/2x1^2+bx1+c)(a/2x2^2+b2x+c)
=(a/2x1^2-ax1^2)(a/2x2^2+ax2^2)
=-(3/4)*a^2x1^2x2^2
因为x1不等与0,x2不等于0,一元二次方程所以a不等于0
所以a^2x1^2x2^2>0
所以f(x1)*f(x2)=-(3/4)*a^2x1^2x2^2<0
就是说f(x1)和f(x2)一正一负
而且f(x)是连续的
同时x1不等于x2
所以必有一个x0在x1和x2之间
使得f(x0)=0
所以x1和x2之间一定有解
若x1和x2之间有两个解
则f(x1)和f(x2)必然同为正或同为负
所以方程f(x)=0有且仅有一个根介于x1和x2之间
=================================================
如果(a/2)x2+bx+c=0必有一根在x1与x2之间
则(ax1^2/2+bx1+c)(ax2^2/2+bx2+c)<0
只要证明这个式子即可。
ax1^2/2+bx1+c=ax1^2+bx1+c-ax1^2/2
因为x1为ax^2+bx+c=0的根
所以ax1^2+bx1+c=0
所以ax1^2/2+bx1+c=-ax1^2/2
同理ax2^2/2+bx2+c=3ax2^2/2
所以(ax1^2/2+bx1+c)(ax2^2/2+bx2+c)
=(-ax1^2/2)(3ax2^2/2)
=-3a^2x1^2x2^2/4
因为x1,x2是非零实根,且ax^2+bx+c=0和-ax^2+bx+c=0是二次方程
所以x1,x2,a都不等于0
所以-3a^2x1^2x2^2/4<0,即
(ax1^2/2+bx1+c)(ax2^2/2+bx2+c)<0
命题得证
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询