什么叫偶数,什么叫奇数?
质数(prime number)又称素数,有无限个,定义为在大于1的自然数中,除了1和它本身以外不再有其他因数。
合数指自然数中除了能被1和本身整除外,还能被其他数(0除外)整除的数。与之相对的是质数,而1既不属于质数也不属于合数。最小的合数是4。其中,完全数与相亲数是以它为基础的。
奇数(英文:odd),又称单数, 整数中,能被2整除的数是偶数,不能被2整除的数是奇数,奇数的个位为1,3,5,7,9。偶数可用2k表示,奇数可用2k+1表示,这里k就是整数。
所有整数不是奇数(单数),就是偶数(双数)。若某数是2的倍数,它就是偶数(双数),可表示为2n;若非,它就是奇数(单数),可表示为2n+1(n为整数),即奇数(单数)除以二的余数是一。
扩展资料
1、关于偶数和奇数,有下面的性质:
(1)两个连续整数中必是一个奇数一个偶数;
(2)奇数与奇数的和或差是偶数;偶数与奇数的和或差是奇数;任意多个偶数的和都是偶数;单数个奇数的和是奇数;双数个奇数的和是偶数;
(3)两个奇(偶)数的和或差是偶数;一个偶数与一个奇数的和或差一定是奇数;
(4)除2外所有的正偶数均为合数;
(5)相邻偶数最大公约数为2,最小公倍数为它们乘积的一半;
(6)奇数与奇数的积是奇数;偶数与偶数的积是偶数;奇数与偶数的积是偶数;
(7) 偶数的个位一定是0、2、4、6或8;奇数的个位一定是1、3、5、7或9;
(8)任何一个奇数都不等于任何一个偶数;若干个整数的连乘积,如果其中有一个偶数,乘积必然是偶数;
(9)偶数的平方被4整除,奇数的平方被8除余1。
2、质数具有许多独特的性质:
(1)质数p的约数只有两个:1和p。
(2)初等数学基本定理:任一大于1的自然数,要么本身是质数,要么可以分解为几个质数之积,且这种分解是唯一的。
(3)质数的个数是无限的。
(6)若n为大于或等于2的正整数,在n到 之间至少有一个质数。
(8)所有大于10的质数中,个位数只有1,3,7,9。
3、合数具有的性质:
(1)所有大于2的偶数都是合数。
(2)所有大于5的奇数中,个位为5的都是合数。
(3)除0以外,所有个位为0的自然数都是合数。
(4)所有个位为4,6,8的自然数都是合数。
(5)最小的(偶)合数为4,最小的奇合数为9。
(6)每一个合数都可以以唯一形式被写成质数的乘积,即分解质因数。(算术基本定理)
(7)对任一大于5的合数(威尔逊定理):