已知函数 f(x)=lnx-a/(x+1) 讨论函数f(x)的单调性?
展开全部
解:易知当a=0时,f(x)在(0,+∞)上单调递增
当a≠0时,f′(x)=1/x+a/(x+1)²=[(x+1)²+ax]/[x(x+1)²]
记g(x)=(x+1)²+ax=x²+(2+a)x+1
由△=(2+a)²-4=a(a+4)
当a>0或a<-4时,方程g(x)=0有两个不等实根,解之得x₀=[-(2+a)±根号(a(a+4))]/2
取x₀=[-(2+a)+根号(a(a+4))]/2
又根号[a(a+4)]<根号[(a+2)²]=a+2
所以x₀<0
故f′(x)在(0,+∞)单调递增
当-4≤a≤0时,g(x)≥0,故f′(x)恒大于0
所以f(x)单调递增
综上,f(x)在(0,+∞)上单调递增
当a≠0时,f′(x)=1/x+a/(x+1)²=[(x+1)²+ax]/[x(x+1)²]
记g(x)=(x+1)²+ax=x²+(2+a)x+1
由△=(2+a)²-4=a(a+4)
当a>0或a<-4时,方程g(x)=0有两个不等实根,解之得x₀=[-(2+a)±根号(a(a+4))]/2
取x₀=[-(2+a)+根号(a(a+4))]/2
又根号[a(a+4)]<根号[(a+2)²]=a+2
所以x₀<0
故f′(x)在(0,+∞)单调递增
当-4≤a≤0时,g(x)≥0,故f′(x)恒大于0
所以f(x)单调递增
综上,f(x)在(0,+∞)上单调递增
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询