小学数学分数应用题.
孩子生病,这部分没有学好,我想要一下小学数学分数的应用题,最好有题和解题的思路,分析.哪位有,分享一下,为了孩子.先谢谢了!!我的孩子六年级....
孩子生病,这部分没有学好,我想要一下小学数学分数的应用题,最好有题和解题的思路,分析.哪位有,分享一下,为了孩子.先谢谢了!!
我的孩子六年级. 展开
我的孩子六年级. 展开
10个回答
展开全部
一“点”——点拨学生寻找题中的单位"1"的量
学生学习分数应用题知识,关键是通过分数应用题中的分率句寻找标准量,而教材中(包括课外书)的分率、标准量有明显的,也有隐含的。要使学生理解分数应用题,必须通过有关分率句准确找出分数应用题的分率、标准量。如十一册教材第5页例2(第一中学买了40000块砖,盖房用去了3/5,用去了多少块砖?),总数(40000块砖)是标准量,盖房用去的是总数的3/5,通过“盖房用去3/5,”这一分率句,帮学生分析清楚:"3/5"是相对于哪个量而言?哪个量代表"1"?数量关系如何理解?这样,整道题的数量关系揭示无遗,题中的问题就迎刃而解了。这里,点拨起到了“画龙点睛”的重要功效。
二“导”——导读、导议,培养能力
这里所说的“导”,是指通过导读教材和导议疑难,激发学生学习的积极性、自觉性和主动性。我通过导读,引导学生按要求阅读教材有关内容,使之口读心思;然后导议,引导他们讨论疑难点(一般采用分小组讨论法),以使学生相互借鉴、启发,对疑难点有充分、深刻的认识,增进其独立思考、鉴别的能力,提高其语言表达能力。
如教学十一册教材第70页例2时,我先让学生阅读课本例题(原计划造林160亩,实际造林200亩,实际造林比原计划造林增加了百分之几?),然后引导他们根据我设立的问题进行小组讨论:
(1)要求实际造林比原计划造林增加百分之几,首先要知道什么条件(要知道原计划几公亩和实际比计划多多少公亩)?
(2)哪个条件不清楚(“实际比原计划多多少公亩”不清楚)?如何求?为什么?
(3)如何解题,为什么?(40÷160=25%,求实际比原计划增加公亩数是原计划的百分之几,根据百分数的意义,用除法计算。)
学生通过议论,兴趣盎然、热情高涨,基本上正确解答了我提出的问题。这样可以变一言堂为群言堂,提高了学生阅读、观察、探索等能力,并培养了集体研讨的良好习惯。
三“式”——运用“演”讲式、练习式、自学式教学法
根据教学内容和学生掌握知识情况,我在教学中选择“演”讲式、自学式、练习式的教学法进行教学。
“演”讲式教学。我通过电教演示、讲述、分析,加深了学生对学习内容的理解和掌握,优化了课堂教学。特别是在分数应用题教学中,恰当地使用电化教学手段,把静的东西变动,把抽象的东西变具体,旨在唤起学生的学习兴趣,帮助们们提高分析、综合、比较的逻辑思维能力。如教学十一册第58页思考题(用绳子测量井深,把绳子三折来量井外作4尺,把绳子折来量,并外作1尺,求绳长和井深)。我借助投影,向学生分析了通过每种折法的线段图的关系,利用直观演示,使学生对这类难度较大的题易于明liǎo@①。
练习式教学。这种教学法,旨在使学生学得主动,深化认知,有效地提高解题技能,发展智力。如在分数应用题复习课中,我在扼要复习分数应用题的基本知识后,有层次、有梯度地出示练习,例如:
(一)分析下面句子,找出标准量,列出乘法关系式:
1、海豚每小时游水速度比鲸鱼速度快1/6。
2、今天烧煤是昨天的6/7。
(二)解答如下应用题。
1、甲工厂6000人,比乙工厂人数少2/3。①本题把什么看作单位"1"的量?为什么?②乙工厂有多少工人?③甲厂比乙厂少几个工人?
2、甲工厂6000人,乙厂比甲厂人数少2/3。①这里把什么量看作标准量?②乙工厂有多少人?
学生练习后,指导他们及时检查小结,运用同一个基本数量关系去思考,去解题。这样,即巩固知识,也形成了技能,使学生能从多种不同角度理解题意,培养了发散思维。
自学式教学。古人云:“授之以鱼,不如授之以渔。”自学式教学起到“授之以渔”的作用。我在分数应用题部分内容的教学中,让学生自己阅读教材、完成作业、测试检查等,促进了学生能力发展,使之聪明才智和学习主动性得以发挥,也培养了他们的自信心、自学能力和良好习惯。如:在“分数乘法应用题”内容第一次测试时,我由学生分组命题进行测试,然后向各组提供题型样板,说明每种题型在考查时的侧重点,由学生讨论命题,把试卷交换作答,独立完成;再后互改互评,以组为单位批改、评议给分;最后我复阅、小结,对有特色的题目,让全班交流、学习。这就调动了他们积极性,增强了他们学习兴趣,使学生的智慧潜能得到充分发挥。
“四性”——培养学生思维的灵活性、独立性、敏捷性、深刻性
思维是智力的核心,是理解、掌握知识的重要心理因素,因而要重视学生思维品质的培养。
我认为,培养学生对概念、题型结构的思维深刻性很重要。在教学中,我通过引导,让学生了解分数应用题有关概念的本质属性,探究数量关系,掌握解题思路及其推理过程,从而对分数应用题的知识有正确的认识。我启发学生深刻理解“求一个数的几分之几是多少”的简单应用题的题型结构、数量关系,特别是对“一个数”、“几分之几”、“多少”等概念的理解。有此为基础,整个分数应用题的教学就较容易进行了。
我不仅注重启发学生总结认知规律,而且鼓励他们运用规律,独立思考,大胆想象,寻求新的发现,培养独创性的思维品质。如我选出一道应用题:李村计划今天植树200棵,结果上午完成3/5,下午完成的与上午同样多。今天李村植树比原计划多多少棵?起初,学生解答为:200×(3/5+3/5)-200=40(棵)。我在学生解答后,问:这道题能否用更简单的方法解答?引导他们突破思维定势,大胆想象。学生经独立思考,分组讨论后,得出了如下的解法:①200×(3/5×2)-200;②200×3/5+200×3/5-200;③200×3/5×2-200;④200×(3/5+3/5-1);⑤200×(3/5×2-1)。我归纳了学生思考回答出的解法,指出了较简单的解法(解示⑤)。学生的独创性思维品质,出现了一次飞跃。
我在教学中还通过一题多变、一题多解等训练,让学生从多个角度去分析、研讨一道应用题,有效地培养了学生思维的敏捷性。
如我在分数应用题单元复习中,曾选用一道练习题:根据下面条件,看谁提的问题多,并列式(小张今天植树5棵,比计划多植树1/8, ?列式 。)结果,学生提出了如下问题①计划植树多少棵?②小张今天植树比计划多多少棵?③实际植树是计划植树的几分之几?④计划植树比实际植树少几分之几?⑤计划植树是实际植树的几分之几?而且列式正确。通过此类型的训练,学生思维更加敏捷,想象更加丰富,同时激发了学习兴趣。
我还注意引导学生把学到的知识进行迁移和应用,做到举一反三、触类旁通。如在处理第十一册一道练习题(车站有货物45吨,用甲汽车运10小时可以运完,用乙车运要15小时运完,用两车同运,多少小时可以运完?)时,我引导学生运用如下两种方法:
1、运用一般解题的思路去解题:45÷(45÷10+45÷15)=6(小时)
2、运用分数应用题(工程)方法解:1÷(1÷10+10+1÷15)=6(小时)
这可使学生理解到从不同角度考虑,就有不同方法处理,培养他们灵活性的思维品质。
文章录入:admin 责任编辑:admin
学生学习分数应用题知识,关键是通过分数应用题中的分率句寻找标准量,而教材中(包括课外书)的分率、标准量有明显的,也有隐含的。要使学生理解分数应用题,必须通过有关分率句准确找出分数应用题的分率、标准量。如十一册教材第5页例2(第一中学买了40000块砖,盖房用去了3/5,用去了多少块砖?),总数(40000块砖)是标准量,盖房用去的是总数的3/5,通过“盖房用去3/5,”这一分率句,帮学生分析清楚:"3/5"是相对于哪个量而言?哪个量代表"1"?数量关系如何理解?这样,整道题的数量关系揭示无遗,题中的问题就迎刃而解了。这里,点拨起到了“画龙点睛”的重要功效。
二“导”——导读、导议,培养能力
这里所说的“导”,是指通过导读教材和导议疑难,激发学生学习的积极性、自觉性和主动性。我通过导读,引导学生按要求阅读教材有关内容,使之口读心思;然后导议,引导他们讨论疑难点(一般采用分小组讨论法),以使学生相互借鉴、启发,对疑难点有充分、深刻的认识,增进其独立思考、鉴别的能力,提高其语言表达能力。
如教学十一册教材第70页例2时,我先让学生阅读课本例题(原计划造林160亩,实际造林200亩,实际造林比原计划造林增加了百分之几?),然后引导他们根据我设立的问题进行小组讨论:
(1)要求实际造林比原计划造林增加百分之几,首先要知道什么条件(要知道原计划几公亩和实际比计划多多少公亩)?
(2)哪个条件不清楚(“实际比原计划多多少公亩”不清楚)?如何求?为什么?
(3)如何解题,为什么?(40÷160=25%,求实际比原计划增加公亩数是原计划的百分之几,根据百分数的意义,用除法计算。)
学生通过议论,兴趣盎然、热情高涨,基本上正确解答了我提出的问题。这样可以变一言堂为群言堂,提高了学生阅读、观察、探索等能力,并培养了集体研讨的良好习惯。
三“式”——运用“演”讲式、练习式、自学式教学法
根据教学内容和学生掌握知识情况,我在教学中选择“演”讲式、自学式、练习式的教学法进行教学。
“演”讲式教学。我通过电教演示、讲述、分析,加深了学生对学习内容的理解和掌握,优化了课堂教学。特别是在分数应用题教学中,恰当地使用电化教学手段,把静的东西变动,把抽象的东西变具体,旨在唤起学生的学习兴趣,帮助们们提高分析、综合、比较的逻辑思维能力。如教学十一册第58页思考题(用绳子测量井深,把绳子三折来量井外作4尺,把绳子折来量,并外作1尺,求绳长和井深)。我借助投影,向学生分析了通过每种折法的线段图的关系,利用直观演示,使学生对这类难度较大的题易于明liǎo@①。
练习式教学。这种教学法,旨在使学生学得主动,深化认知,有效地提高解题技能,发展智力。如在分数应用题复习课中,我在扼要复习分数应用题的基本知识后,有层次、有梯度地出示练习,例如:
(一)分析下面句子,找出标准量,列出乘法关系式:
1、海豚每小时游水速度比鲸鱼速度快1/6。
2、今天烧煤是昨天的6/7。
(二)解答如下应用题。
1、甲工厂6000人,比乙工厂人数少2/3。①本题把什么看作单位"1"的量?为什么?②乙工厂有多少工人?③甲厂比乙厂少几个工人?
2、甲工厂6000人,乙厂比甲厂人数少2/3。①这里把什么量看作标准量?②乙工厂有多少人?
学生练习后,指导他们及时检查小结,运用同一个基本数量关系去思考,去解题。这样,即巩固知识,也形成了技能,使学生能从多种不同角度理解题意,培养了发散思维。
自学式教学。古人云:“授之以鱼,不如授之以渔。”自学式教学起到“授之以渔”的作用。我在分数应用题部分内容的教学中,让学生自己阅读教材、完成作业、测试检查等,促进了学生能力发展,使之聪明才智和学习主动性得以发挥,也培养了他们的自信心、自学能力和良好习惯。如:在“分数乘法应用题”内容第一次测试时,我由学生分组命题进行测试,然后向各组提供题型样板,说明每种题型在考查时的侧重点,由学生讨论命题,把试卷交换作答,独立完成;再后互改互评,以组为单位批改、评议给分;最后我复阅、小结,对有特色的题目,让全班交流、学习。这就调动了他们积极性,增强了他们学习兴趣,使学生的智慧潜能得到充分发挥。
“四性”——培养学生思维的灵活性、独立性、敏捷性、深刻性
思维是智力的核心,是理解、掌握知识的重要心理因素,因而要重视学生思维品质的培养。
我认为,培养学生对概念、题型结构的思维深刻性很重要。在教学中,我通过引导,让学生了解分数应用题有关概念的本质属性,探究数量关系,掌握解题思路及其推理过程,从而对分数应用题的知识有正确的认识。我启发学生深刻理解“求一个数的几分之几是多少”的简单应用题的题型结构、数量关系,特别是对“一个数”、“几分之几”、“多少”等概念的理解。有此为基础,整个分数应用题的教学就较容易进行了。
我不仅注重启发学生总结认知规律,而且鼓励他们运用规律,独立思考,大胆想象,寻求新的发现,培养独创性的思维品质。如我选出一道应用题:李村计划今天植树200棵,结果上午完成3/5,下午完成的与上午同样多。今天李村植树比原计划多多少棵?起初,学生解答为:200×(3/5+3/5)-200=40(棵)。我在学生解答后,问:这道题能否用更简单的方法解答?引导他们突破思维定势,大胆想象。学生经独立思考,分组讨论后,得出了如下的解法:①200×(3/5×2)-200;②200×3/5+200×3/5-200;③200×3/5×2-200;④200×(3/5+3/5-1);⑤200×(3/5×2-1)。我归纳了学生思考回答出的解法,指出了较简单的解法(解示⑤)。学生的独创性思维品质,出现了一次飞跃。
我在教学中还通过一题多变、一题多解等训练,让学生从多个角度去分析、研讨一道应用题,有效地培养了学生思维的敏捷性。
如我在分数应用题单元复习中,曾选用一道练习题:根据下面条件,看谁提的问题多,并列式(小张今天植树5棵,比计划多植树1/8, ?列式 。)结果,学生提出了如下问题①计划植树多少棵?②小张今天植树比计划多多少棵?③实际植树是计划植树的几分之几?④计划植树比实际植树少几分之几?⑤计划植树是实际植树的几分之几?而且列式正确。通过此类型的训练,学生思维更加敏捷,想象更加丰富,同时激发了学习兴趣。
我还注意引导学生把学到的知识进行迁移和应用,做到举一反三、触类旁通。如在处理第十一册一道练习题(车站有货物45吨,用甲汽车运10小时可以运完,用乙车运要15小时运完,用两车同运,多少小时可以运完?)时,我引导学生运用如下两种方法:
1、运用一般解题的思路去解题:45÷(45÷10+45÷15)=6(小时)
2、运用分数应用题(工程)方法解:1÷(1÷10+10+1÷15)=6(小时)
这可使学生理解到从不同角度考虑,就有不同方法处理,培养他们灵活性的思维品质。
文章录入:admin 责任编辑:admin
展开全部
例题1爸爸买了一个大西瓜,妈妈吃了2/8,豆豆吃了1/8,他们一共吃了几分之几?
分析:妈妈吃了2/8,也就是吃了一个大西瓜的2/8,所以这里大西瓜就是单位“1”。
他们一共吃了几分之几,就是把两个分数直接加起来就可以了。
解:2/8+1/8=3/8
答:他们一共吃了3/8.
例题2.三(1)班和三(2)班给学校里所有小树浇水,三(1)班浇了3/9,三(2)班浇了几分之几?
分析:三(1)班浇了3/9,也就是浇了所有小树的3/9,相当于把所有的小树平均分成9份,三(1)班浇了其中的3份,这里的单位“1”是什么呢?就是学校里所有的小树。
解:1-3/9=6/9
答:三(2)班浇了6/9.
例题3.一包瓜子重1/4 千克,比一包糖轻2/4千克,一包瓜子和一包糖共有多重?
分析:先求出一包糖的重量,1/4+2/4=3/4(千克),再把瓜子和糖的重量加起来就行了。
解:1/4+2/4=3/4(千克)→一包糖的重量
1/4+3/4=4/4=1(千克)
答:一包瓜子和一包糖共重1千克。
分析:妈妈吃了2/8,也就是吃了一个大西瓜的2/8,所以这里大西瓜就是单位“1”。
他们一共吃了几分之几,就是把两个分数直接加起来就可以了。
解:2/8+1/8=3/8
答:他们一共吃了3/8.
例题2.三(1)班和三(2)班给学校里所有小树浇水,三(1)班浇了3/9,三(2)班浇了几分之几?
分析:三(1)班浇了3/9,也就是浇了所有小树的3/9,相当于把所有的小树平均分成9份,三(1)班浇了其中的3份,这里的单位“1”是什么呢?就是学校里所有的小树。
解:1-3/9=6/9
答:三(2)班浇了6/9.
例题3.一包瓜子重1/4 千克,比一包糖轻2/4千克,一包瓜子和一包糖共有多重?
分析:先求出一包糖的重量,1/4+2/4=3/4(千克),再把瓜子和糖的重量加起来就行了。
解:1/4+2/4=3/4(千克)→一包糖的重量
1/4+3/4=4/4=1(千克)
答:一包瓜子和一包糖共重1千克。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
我是小学的,我刚好有,我是数学课代表,问一下是几年级的,先说一下,我再来解答o(∩_∩)o...
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
我就是6年级的,上月刚学完.
”是”,”比”,”占”后面的数为标准量
求一个数是另一个数的几分之几用分数表示
”是”,”比”,”占”后面的数一般作除数......................................................................................................
”是”,”比”,”占”后面的数为标准量
求一个数是另一个数的几分之几用分数表示
”是”,”比”,”占”后面的数一般作除数......................................................................................................
参考资料: 老师
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
六年级应用题:
大部分都是增长率问题,还有求面积,学生学习分数应用题知识,关键是通过分数应用题中的分率句寻找标准量,而教材中(包括课外书)的分率、标准量有明显的,也有隐含的。要使学生理解分数应用题,必须通过有关分率句准确找出分数应用题的分率、标准量。如十一册教材第5页例2(第一中学买了40000块砖,盖房用去了3/5,用去了多少块砖?),总数(40000块砖)是标准量,盖房用去的是总数的3/5,通过“盖房用去3/5,”
大部分都是增长率问题,还有求面积,学生学习分数应用题知识,关键是通过分数应用题中的分率句寻找标准量,而教材中(包括课外书)的分率、标准量有明显的,也有隐含的。要使学生理解分数应用题,必须通过有关分率句准确找出分数应用题的分率、标准量。如十一册教材第5页例2(第一中学买了40000块砖,盖房用去了3/5,用去了多少块砖?),总数(40000块砖)是标准量,盖房用去的是总数的3/5,通过“盖房用去3/5,”
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询