问一个高等数学的问题。。。
设f''(x)存在,求证lim(h→0)[f(x+2h)-2f(x+h)+f(x)]/h^2=f''(x)...
设f''(x)存在,求证 lim(h→0) [f(x+2h)-2f(x+h)+f(x)]/h^2=f''(x)
展开
展开全部
使用一次洛必达法则,再使用导数的定义
lim(h→0) [f(x+2h)-2f(x+h)+f(x)]/h^2
=lim(h→0) [2f'(x+2h)-2f'(x+h)]/(2h)
=lim(h→0) [f'(x+2h)-f'(x+h)]/h
=lim(h→0) {2×[f'(x+2h)-f'(x)]/(2h)-[f'(x+h)-f'(x)]/h}
=2×lim(h→0)[f'(x+2h)-f'(x)]/(2h)-lim(h→0)[f'(x+h)-f'(x)]/h
=2×f''(x)-f''(x)
=f''(x)
lim(h→0) [f(x+2h)-2f(x+h)+f(x)]/h^2
=lim(h→0) [2f'(x+2h)-2f'(x+h)]/(2h)
=lim(h→0) [f'(x+2h)-f'(x+h)]/h
=lim(h→0) {2×[f'(x+2h)-f'(x)]/(2h)-[f'(x+h)-f'(x)]/h}
=2×lim(h→0)[f'(x+2h)-f'(x)]/(2h)-lim(h→0)[f'(x+h)-f'(x)]/h
=2×f''(x)-f''(x)
=f''(x)
展开全部
因为f''(x)存在
即f'(x)也存在
所以f''(x)=lim(h→0) [f'(x+h)-f'(x)]/h
又因为f'(x)=lim(h→0) [f(x+h)-f(x)]/h
所以f''(x)=lim(h→0) [f(x+2h)-2f(x+h)+f(x)]/h^2
即f'(x)也存在
所以f''(x)=lim(h→0) [f'(x+h)-f'(x)]/h
又因为f'(x)=lim(h→0) [f(x+h)-f(x)]/h
所以f''(x)=lim(h→0) [f(x+2h)-2f(x+h)+f(x)]/h^2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
lim(h→0) [f(x+2h)-2f(x+h)+f(x)]/h^2
=lim(h→0){[f(x+2h)-f(x+h)]/h-[f(x+h)+f(x)]/h}/h
=lim(h→0)[f'(x+h)-f'(x)]/h=f''(x)
=lim(h→0){[f(x+2h)-f(x+h)]/h-[f(x+h)+f(x)]/h}/h
=lim(h→0)[f'(x+h)-f'(x)]/h=f''(x)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询