4个回答
展开全部
立体几何的学习主要在培养空间抽象能力的基础上,发展学生的逻辑思维能力和空间想象能力。立体几何是中学数学的一个难点,学生普遍反映“几何比代数难学”。但很多学好这部分的同学,又觉得这部分很简单。
一、空间想象能力的提高
开始学习的时候,学生首先要多看简单的立体几何题目,不能从难题入手。自己动手画一些立体几何的图形,比如教材上的习题、辅导书上的练习题,不看原图,自己先画。画出来的图形很可能和给出的图不一样,这是好事,再对比一下,那个图更容易解题。
二、逻辑思维能力的培养
培养逻辑思维能力,首先是牢固掌握数学的基础知识,其次掌握必要的逻辑知识和逻辑思维。
1.加强对基本概念理解
数学概念是数学知识体系的两大组成部分之一,理解与掌握数学概念是学好数学、提高数学能力的关键。
对于基本概念的理解,首先要多想。比如对异面直线的理解,两条直线不在同一个平面是简单的定义,如何才能不在同一个平面呢,第一是把同一个平面上的直线离开这个平面,或者用两支笔来比划,这样直观上有了异面直线的概念,然后想在数学上怎么才能保证两条直线不在一个平面,那些条件能保证两条直线不在一个平面。我们多去想想,就可以知道,只要直线不平行,并且不相交,那么就异面。对于不平行的条件,在平面几何中我们已经知道,如何能保证不相交呢,想象延长线等手段能不能得到证明呢,如果不能,那么把其中一条直线放在一个平面,看另外一条直线和这个平面是否平行,这样我们对异面直线的概念就比较容易掌握。
2.加强对数学命题的理解,学会灵活运用数学命题解决问题
对数学的公理、定理的理解和应用,突出反映在题目的证明和计算上。学生需要避免证明中出现逻辑推理不严密,运用定理、公理、法则时言非有据,或以主观臆断代替严密的科学论证,书写格式不合理,层次不清,数学符号语言使用不当,不合乎习惯等。
(1)重视定理本身的证明。我们知道,定理本身的证明思路具有示范性、典型性,它体现了基本的逻辑推理知识和基本的证明思想的培养,以及规范的书写格式的养成。做到不仅会分析定理的条件和结论,而且能掌握定理的内容,证明的思想方法,适用范围和表达形式。特别是进入高中学习以后所涉及到的一些新的思想方法,如新教材上的立体几何例题:“过平面外一点与平面内一点的直线,和平面内不经过该点的直线是异面直线。”此定理的证明就采用了反证法,那么反证法的证题思想就需要去体会,一般步骤,书写格式,注意要点等,并配以适当的训练,以初步掌握应用反证法证明立体几何题。
(2)提高应用定理分析问题和解决问题的能力。对于习题,我们首先需要知道:要干什么(要求的结论是什么),那些条件能满足要求,这样一步一步往前找条件。当然这要根据具体情况,需要多看习题,必要的练习是不可以缺少的。
一、空间想象能力的提高
开始学习的时候,学生首先要多看简单的立体几何题目,不能从难题入手。自己动手画一些立体几何的图形,比如教材上的习题、辅导书上的练习题,不看原图,自己先画。画出来的图形很可能和给出的图不一样,这是好事,再对比一下,那个图更容易解题。
二、逻辑思维能力的培养
培养逻辑思维能力,首先是牢固掌握数学的基础知识,其次掌握必要的逻辑知识和逻辑思维。
1.加强对基本概念理解
数学概念是数学知识体系的两大组成部分之一,理解与掌握数学概念是学好数学、提高数学能力的关键。
对于基本概念的理解,首先要多想。比如对异面直线的理解,两条直线不在同一个平面是简单的定义,如何才能不在同一个平面呢,第一是把同一个平面上的直线离开这个平面,或者用两支笔来比划,这样直观上有了异面直线的概念,然后想在数学上怎么才能保证两条直线不在一个平面,那些条件能保证两条直线不在一个平面。我们多去想想,就可以知道,只要直线不平行,并且不相交,那么就异面。对于不平行的条件,在平面几何中我们已经知道,如何能保证不相交呢,想象延长线等手段能不能得到证明呢,如果不能,那么把其中一条直线放在一个平面,看另外一条直线和这个平面是否平行,这样我们对异面直线的概念就比较容易掌握。
2.加强对数学命题的理解,学会灵活运用数学命题解决问题
对数学的公理、定理的理解和应用,突出反映在题目的证明和计算上。学生需要避免证明中出现逻辑推理不严密,运用定理、公理、法则时言非有据,或以主观臆断代替严密的科学论证,书写格式不合理,层次不清,数学符号语言使用不当,不合乎习惯等。
(1)重视定理本身的证明。我们知道,定理本身的证明思路具有示范性、典型性,它体现了基本的逻辑推理知识和基本的证明思想的培养,以及规范的书写格式的养成。做到不仅会分析定理的条件和结论,而且能掌握定理的内容,证明的思想方法,适用范围和表达形式。特别是进入高中学习以后所涉及到的一些新的思想方法,如新教材上的立体几何例题:“过平面外一点与平面内一点的直线,和平面内不经过该点的直线是异面直线。”此定理的证明就采用了反证法,那么反证法的证题思想就需要去体会,一般步骤,书写格式,注意要点等,并配以适当的训练,以初步掌握应用反证法证明立体几何题。
(2)提高应用定理分析问题和解决问题的能力。对于习题,我们首先需要知道:要干什么(要求的结论是什么),那些条件能满足要求,这样一步一步往前找条件。当然这要根据具体情况,需要多看习题,必要的练习是不可以缺少的。
参考资料: http://www.xinnianhua.com/Article/ShowInfo.asp?ID=4349
展开全部
兴趣是最好的老师,首先你要很感兴趣,然后你才能刻苦。多学多练习,不懂就问,总之勤快点
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
实在不行就用向量坐标来解题,这样可以不用特别研究图但是运算要求比较高
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
去学素描咯,我学过所以看东西都会以透视的角度去看,或者买本素描书自己画画几何,会对你有帮助
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询