已知抛物线解析式为y=x^2-(2m-1)x+m^2-m

已知抛物线解析式为y=x^2-(2m-1)x+m^2-m(1)求证:此抛物线与x轴必有两个不同的交点(2)若抛物线与直线y=x-3m+4的一个交点在y轴上,求m的值... 已知抛物线解析式为y=x^2-(2m-1)x+m^2-m
(1)求证:此抛物线与x轴必有两个不同的交点
(2)若抛物线与直线y=x-3m+4的一个交点在y轴上,求m的值
展开
yufen961118
推荐于2016-12-01 · TA获得超过1.7万个赞
知道大有可为答主
回答量:2577
采纳率:0%
帮助的人:3896万
展开全部
⊿=[-(2m-1)]^2-4(m^2-m)=1>0,
∴此抛物线与x轴必有两个不同的交点 .
y=x^2-(2m-1)x+m^2-m
y=x-3m+4,
x^2-(2m-1)x+m^2-m=x-3m+4,x=0,
m^2+2m-4=0,
m1=-1+√5,m2=-1-√5.
富港检测技术(东莞)有限公司_
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发... 点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
cgchao6666
2008-12-04 · TA获得超过2.3万个赞
知道大有可为答主
回答量:6004
采纳率:33%
帮助的人:3440万
展开全部
y=x^2-(2m-1)x+m^2-m
=(x-m)[x-(m-1)]
∴有两个不同的交点(m,0),(m-1,0)
若抛物线与直线y=x-3m+4的一个交点在y轴上
y=x^2-(2m-1)x+m^2-m
y=x-3m+4,
x^2-(2m-1)x+m^2-m=x-3m+4,x=0,
m^2+2m-4=0,
m1=-1+√5,m2=-1-√5.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式