杨辉三角形有什么规律

详细一点拜托... 详细一点 拜托 展开
醉意撩人殇
高粉答主

2019-04-24 · 关注我不会让你失望
知道小有建树答主
回答量:201
采纳率:100%
帮助的人:9.9万
展开全部

1、每个数等于它上方两数之和。

2、每行数字左右对称,由1开始逐渐变大。

3、第n行的数字有n项。

4、第n行的m个数可表示为 C(n-1,m-1),即为从n-1个不同元素中取m-1个元素的组合数。

5、第n行的第m个数和第n-m+1个数相等 ,为组合数性质之一。

6、每个数字等于上一行的左右两个数字之和。可用此性质写出整个杨辉三角。即第n+1行的第i个数等于第n行的第i-1个数和第i个数之和,这也是组合数的性质之一。即 C(n+1,i)=C(n,i)+C(n,i-1)。

7、(a+b)n的展开式中的各项系数依次对应杨辉三角的第(n+1)行中的每一项。

8、将第2n+1行第1个数,跟第2n+2行第3个数、第2n+3行第5个数……连成一线,这些数的和是第4n+1个斐波那契数;将第2n行第2个数(n>1),跟第2n-1行第4个数、第2n-2行第6个数……这些数之和是第4n-2个斐波那契数。

9、将第n行的各数值,分别乘以10的列数m-1次方,然后把这些数值相加的和等于11的n-1次方。

扩展资料:

发现历程:

二项式系数表为在我国被称为贾宪三角或杨辉三角,一般认为是北宋数学家贾宪所首创。它记载于杨辉的《详解九章算法》(1261)之中。在阿拉伯数学家卡西的著作《算术之钥》(1427)中也给出了一个二项式定理系数表,他所用的计算方法与贾宪的完全相同。

在欧洲,德国数学家阿皮安努斯在他1527年出版的算术书的封面上刻有此图。但一般却称之为帕斯卡三角形,因为帕斯卡在1654年也发现了这个结果。无论如何,二项式定理的发现,在我国比在欧洲至少要早300年。  

1665年,牛顿把二项式定理推广到n为分数与负数的情形,给出了展开式。   二项式定理在组合理论、开高次方、高阶等差数列求和,以及差分法中有广泛的应用。

参考资料来源:百度百科——帕斯卡三角形

艳阳在高照
推荐于2017-12-16 · TA获得超过5.3万个赞
知道大有可为答主
回答量:9200
采纳率:54%
帮助的人:6448万
展开全部
杨辉三角是一个由数字排列成的三角形数表,一般形式如下:
1 n=0
1 1 n=1
1 2 1 n=2
1 3 3 1 n=3
1 4 6 4 1 n=4
1 5 10 10 5 1 n=5
1 6 15 20 15 6 1 n=6
……
此数列中各行中的数字正好是二项式a+b乘方后,展开始终各项的系数。如:
(a+b)^1=a^1+b^1
(a+b)^2=a^2+2ab+b^2
(a+b)^3=a^3+3a^2b+3ab^2+b^3
……
(a+b)^6=a^6+6a^5b+15a^4b^2+20a^3b^3+15a^2b^4+6ab^5+b^6(注意发现规律)
……

参考资料: http://baike.baidu.com/view/7804.htm

本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友3a074977f
2008-12-05 · TA获得超过3468个赞
知道小有建树答主
回答量:611
采纳率:0%
帮助的人:799万
展开全部
1.杨辉三角的第n行就是二项式 展开式的系数列。
2.对称性:杨辉三角中的数字左右对称,对称轴是杨辉三角形底边上的“高”。
3.结构特征:杨辉三角除斜边上1以外的各数,都等于它“肩上”的两数之和。
4.这些数排列的形状像等腰三角形,两腰上的数都是1。
5.从右往左斜着看,从左往右斜着看,和前面的看法一样,这个数列是左右对称的。
6.这行数是第几行,就是第二个数加一。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
flowerlzwz
2008-12-05 · TA获得超过2734个赞
知道答主
回答量:44
采纳率:0%
帮助的人:21.6万
展开全部
杨辉三角的三个基本性质主要是二项展开式的二项式系数即组合数的性质,它是研究杨辉三角其他规律的基础。杨辉三角横行的数字规律主要包括横行各数之间的大小关系。组合关系以及不同横行数字之间的联系
与二项式定理的关系:杨辉三角的第n行就是二项式 展开式的系数列。
对称性:杨辉三角中的数字左、右对称,对称轴是杨辉三角形底边上的“高”。
结构特征:杨辉三角除斜边上1以外的各数,都等于它“肩上”的两数之和。
这些数排列的形状像等腰三角形,两腰上的数都是1。
从右往左斜着看,从左往右斜着看,和前面的看法一样,这个数列是左右对称的。
上面两个数之和就是下面的一行的数。
这行数是第几行,就是第二个数加一。

参考资料: http://baike.baidu.com/view/7804.htm

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式