3个回答
展开全部
因为CE是角平分线,所以根据正弦定理有AE:EB=AC:BC=sin60:sin100;
CD:DB=AC:BD=sinB:sin角BAD=sin60:sin80;
又因为sin80=sin100,所以AE:EB=CD:BD,所以,ED//AC;
所以角DEC等于角ECA=10度。
下面再简单介绍一下本证明运用的一些性质定理:
1,角平分线的性质:若CE为三角形ABC的角平分线,则有AE:EB=AC:BC;要证明很简单,延长CE,过B作AC的平行线,它们交于D点,则BD=BC,很明显,AC:BD=AE:EB;得证;
2,正弦定理:三角形ABC中,sinA:sinB:sinC=a:b:c
要证明也很简单,利用三角形的高即可分别得出结论,这里就不说了。
CD:DB=AC:BD=sinB:sin角BAD=sin60:sin80;
又因为sin80=sin100,所以AE:EB=CD:BD,所以,ED//AC;
所以角DEC等于角ECA=10度。
下面再简单介绍一下本证明运用的一些性质定理:
1,角平分线的性质:若CE为三角形ABC的角平分线,则有AE:EB=AC:BC;要证明很简单,延长CE,过B作AC的平行线,它们交于D点,则BD=BC,很明显,AC:BD=AE:EB;得证;
2,正弦定理:三角形ABC中,sinA:sinB:sinC=a:b:c
要证明也很简单,利用三角形的高即可分别得出结论,这里就不说了。
展开全部
10度
我们要证明:ED//AC.
为此,要求出D点和E点到AC的距离,然后证明它们相等。分别过D,E作AC的垂线DF,EG,
显然,等腰三角形ADC里,DF=(1/2)AC*tan20,设EG=x,则有tanECG=tan10=EG/(AG+AC)=x/(xtanAEG+AC)=x/(xtan10+AC),解出x=AC*(tan10/(1-(tan10)^2)=EG.
现在,DF=(1/2)AC*tan20=(1/2)AC*(2tan10/(1-(tan10)^2)=EG.这就证明了EG=DF,
所以ED//AC,故角CED=ECD=10度。
我们要证明:ED//AC.
为此,要求出D点和E点到AC的距离,然后证明它们相等。分别过D,E作AC的垂线DF,EG,
显然,等腰三角形ADC里,DF=(1/2)AC*tan20,设EG=x,则有tanECG=tan10=EG/(AG+AC)=x/(xtanAEG+AC)=x/(xtan10+AC),解出x=AC*(tan10/(1-(tan10)^2)=EG.
现在,DF=(1/2)AC*tan20=(1/2)AC*(2tan10/(1-(tan10)^2)=EG.这就证明了EG=DF,
所以ED//AC,故角CED=ECD=10度。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
15°
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询