1、三角形内切圆半径:r=2S/(a+b+c);
2、三角形外接圆的半径:R=abc/4S。
其中,S为三角形的面积,a,b,c分别为三角形的三边。
三角形的内切圆圆心定在三角形内部,三个角的角平分线的交点是内切圆的圆心,圆心到三角形各个边的垂线段相等。
三角形的外接圆圆心是任意两边的垂直平分线的交点。
扩展资料
任何三角形都有五心,分别是重心、垂心、外心、内心、旁心。
重心是三角形三边中线的交点,为三角形的重心,在三角形的内部;重心到顶点的距离是到对边中点距离的2倍。垂心是三角形三边高线的交点,锐角三角形垂心在内部,直角三角形在直角顶点,钝角三角形在外部。
外心是三角形三边垂直平分线的交点,锐角三角形的外心在内部,直角三角形在斜边中点,钝角三角形在外部;此点为△外接圆的圆心,到三顶点的距离相等,这个距离叫外接圆半径R.内心是三角形三内角平分线的交点,为三角形的内心,在三角形的内部,此点为三角形内切圆的圆心。
重心、垂心、外心、内心均只有唯一的一点,作图时只需作出二线,第三线一定过此点。
旁心是三角形相邻二外角的平分线的交点,为三角形的旁心。任何三角形都有三颗旁心,且不相邻的内角平分线过旁心,旁心到三边的距离相等。
参考资料来源:百度百科--三角形的内切圆
参考资料来源:百度百科--外接圆
则S=1/2*(a+b+c)*r
得r=2S/(a+b+c)
注:证明:设O为内切圆心,则三角形ABC分解成OAB,OBC,OAC三个三角形,其面积分别是1/2*cr,1/2*ar,1/2*br。则S=1/2*ar+1/2*br+1/2*cr=1/2*(a+b+c)*r
S=abc/(4R)
R=abc/4S
注:证明:由正弦定理得
a/sinA=2R
得sinA=a/(2R)
S=1/2*bc*sinA
=1/2*bc*a/(2R)
S=abc/(4R)
【正弦定理】a,b,c、A,B,C分别是△ABC的边和角
△ABC的内切圆半径r:
r=2S/(a+b+c)
S是△ABC的面积;a,b,c是∠A,∠B,∠C对应的边