关于用PCA做人脸识别

我想问的是:(1PCA做人脸识别的机制;(2PCA的基础K-L变换到底怎么理解;希望能给个通俗易懂的回答,资料我这很多,主要我希望有人能让这个刚涉及这方面知识的我有个稍微... 我想问的是:
(1 PCA做人脸识别的机制;
(2 PCA的基础K-L变换到底怎么理解;
希望能给个通俗易懂的回答,资料我这很多,主要我希望有人能让这个刚涉及这方面知识的我有个稍微有点深入的了解.

附加:希望与有这方面研究的朋友一起交流;
邮箱:z123321@163.com

悬赏分先给 100 吧!如果给的回答能让我有更深入的了解,我将在额外加200悬赏分.
展开
 我来答
feiyesdropship
2008-12-11 · TA获得超过123个赞
知道答主
回答量:68
采纳率:0%
帮助的人:0
展开全部
PCA is a vector space transform often used to reduce multidimensional data sets to lower dimensions for analysis.

your question 1 is somehow wrong.

I do not know how much you have already know about pattern classification. Generally, we represent an object with a vector, the more attributes it has, the dimensions the vector has. For example, a 25 years old male [25, 0] a 35 years old female [35,1]

However, an object always has a lot of attributes, which makes the dimension of the vectors very high. This fact leads to huge computation and worse result (in most cases). We can understand it like this, of course to represent you alone, you need a lot of attributes, say, 100. But to distinguish you from me, only 10 will be enough. The rest of the 100 numbers then becomes "noise" in our classifier.

This is why we need to do "feature selection", "dimension reduction" etc.

PCA reduces dimension by retaining those characteristics of the data set that contribute most to its variance. You may want to read some paper about SVD to understand it better.

For K-L transform, actually I never heard that before. But I guess it might be another name of SVD.

If you have any question, feel free to contact me (by send messages).
BJ华夏艺匠
2024-08-11 广告
智慧人脸识别模型,作为我们北京华夏艺匠模型科技有限公司技术创新的核心之一,集成了先进的人工智能算法与深度学习技术。该模型能够精准高效地识别个体面部特征,即使在复杂多变的光照与环境条件下,也能保持高准确率的身份验证与识别能力。广泛应用于安全监... 点击进入详情页
本回答由BJ华夏艺匠提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式