帮忙解决一下数学问题(初三)

1.已知关于x的方程(a+c)x的平方+2bx-(c-a)=0的两个解之和为-1,两解之差为1,且a,b,c为三角形ABC三边.(1)求方程的两解.(2)判断三角形ABC... 1.已知关于x的方程(a+c)x的平方+2bx-(c-a)=0的两个解之和为-1,两解之差为1,且a,b,c为三角形ABC三边.(1)求方程的两解.(2)判断三角形ABC的形状.

2.设等腰三角形的一腰与底边的长分别是方程x的平方-6x+a=0的两根,当这样的三角形只有一个时,试求a的取值范围.(写过程)
展开
lzq681026
2008-12-14 · TA获得超过1.3万个赞
知道大有可为答主
回答量:3051
采纳率:67%
帮助的人:1833万
展开全部
解:(1)令(a+c)x²+2bx-(c-a)=0的两个解为x1、x2,根据韦达定理:x1+x2=-2b/(a+c)=-1 x1•x2=(a-c)/(a+c)
又:(x1-x2)²=(x1+x2)²-4(a-c)/(a+c)=(-1)² 即:1-4(a-c)/(a+c)=1 故:a=c
由:x1+x2=-2b/(a+c)=-1 得:b=a+c=2a
故:(a+c)x²+2bx-(c-a)=0可以化为:2ax²+4ax=0 故:x1=0 x2=-4

因为b=a+c,故a、b、c不能构成△(我估计答案是等腰△)

(2)令x²-6x+a=0的两根为t、b,其中t为等腰三角形的腰,根据韦达定理有:t+b=6 bt=a
又根据三角形三边的关系有:2t>b 结合t+b=6(即:b=6-t)得:2t>6-t
故:2<t<6
又:a=bt=t(6-t)=-(t-3)²+9 且2<t<6,结合二次函数的图像可知:在2<t<6范围内:当t=3时,a有最大值9;当t=6时,a有最小值0
故:0<a≤9
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式