已知f(x)=(4x^2-7)÷(2-x) 0≤x≤1,求f(x)的单调区间和值域
2个回答
展开全部
令2-x=t,1≤t≤2
f(t)=(4*(2-t)^2-7)/t
=4t+9/t-16
当4t=9/t时,t=1.5则x=0.5
∴x∈[0,0.5]递减,(0.5,1]递增
f(0)=-3.5,f(1)=-3,f(0.5)=-4
∴值域为[-4,-3]
f'(x)=(8x(2-x)+(4x^2-7))/(x-2)^2
令f'(x)=0
得到4x^2-16x+7=0
x=3.5,x=0.5
x∈[0,0.5],f'(x)<0,f(x)递减
x∈(0.5,1],f'(x)>0,f(x)递增
f(0)=-3.5,f(1)=-3,f(0.5)=-4
∴值域为[-4,-3]
f(t)=(4*(2-t)^2-7)/t
=4t+9/t-16
当4t=9/t时,t=1.5则x=0.5
∴x∈[0,0.5]递减,(0.5,1]递增
f(0)=-3.5,f(1)=-3,f(0.5)=-4
∴值域为[-4,-3]
f'(x)=(8x(2-x)+(4x^2-7))/(x-2)^2
令f'(x)=0
得到4x^2-16x+7=0
x=3.5,x=0.5
x∈[0,0.5],f'(x)<0,f(x)递减
x∈(0.5,1],f'(x)>0,f(x)递增
f(0)=-3.5,f(1)=-3,f(0.5)=-4
∴值域为[-4,-3]
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询