2个回答
展开全部
令tanx=t,则x=arctant,dx=dt/(1+t^2),cos^2x=1/(1+t^2),sin^2x=1-cos^2t=t^2/(1+t^2)
∫dx/{cos²(2x)+2sin²(2x)}
=∫dx/[1+sin²(2x)]
=∫dx/(1+4sin²xcos²x)
=∫[dt/(1+t^2)]/[(1+4t^2/(1+t^2)^2]
=∫(1+t^2)/(t^4+6t^2+1)dt
=∫(1+t^2)/{[t^2+(√2+1)^2][t^2+(√2-1)^2]}dt
=[(√2+1)/(2√2)]∫dt/[t^2+(√2+1)^2]+[(√2-1)/(2√2)]∫dt/[t^2+(√2-1)^2]
=(√2/4){arctan[t/(√2+1)]+arctan[t/(√2-1)]}
=(√2/4){arctan[(√2+1)tanx]+arctan[(√2-1)tanx]}
∫dx/{cos²(2x)+2sin²(2x)}
=∫dx/[1+sin²(2x)]
=∫dx/(1+4sin²xcos²x)
=∫[dt/(1+t^2)]/[(1+4t^2/(1+t^2)^2]
=∫(1+t^2)/(t^4+6t^2+1)dt
=∫(1+t^2)/{[t^2+(√2+1)^2][t^2+(√2-1)^2]}dt
=[(√2+1)/(2√2)]∫dt/[t^2+(√2+1)^2]+[(√2-1)/(2√2)]∫dt/[t^2+(√2-1)^2]
=(√2/4){arctan[t/(√2+1)]+arctan[t/(√2-1)]}
=(√2/4){arctan[(√2+1)tanx]+arctan[(√2-1)tanx]}
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询