微分和积分的定义式子?

关于微分和积分的就是微分和积分的定义动不动就是dy/dx=啥的F'(x)=f(x)dF(x)=f(x)dx还有什么d/dx[∫f(x)dx]=f(x)∫F'(x)dx=F... 关于微分 和 积分的

就是微分和积分的定义动不动就是dy/dx=啥的
F'(x)=f(x)

dF(x)=f(x)dx

还有什么d/dx[∫f(x)dx]=f(x)

∫F'(x)dx=F(x)+c

还说“微分运算与积分运算是互逆的。2个运算连在一起时,d∫完全抵消,
∫d抵消后相差一常数。”

这是都是啥根啥啊。。。

都是定义。。。但是我分不清

讲懂重奖~谢谢
可不可以再讲清楚点。。。谢谢

。。。
初中就自学啊 大哥你确实太强了 不过我很大度的 我学不好我一点都不怪自己 我也是被逼上梁山的 鬼才知道学国贸要学微积分 早知道我就不学这个了 不过话说回来 历史上是先有积分吧 还有那个教材 我真的都翻烂了。。。但是还是看不懂啊 特别是那个换元法做微分的 我晕哦~啥根啥啊 总之一句话。。。学微积分 就是有一个泥潭进入另一个泥潭 以后还有线性代数 西方经济学 概率统计。。。那就是无数的泥潭。。。
-------------------------------
我们学校转专业的条件是期末考试年纪综合排名前三 你说如果我都能进前三了 我还用得着转专业吗???。。。囧
展开
电灯剑客
科技发烧友

2008-12-30 · 智能家居/数码/手机/智能家电产品都懂点
知道大有可为答主
回答量:1.2万
采纳率:83%
帮助的人:4956万
展开全部
这些记号都由Leibniz创立,严格的讲法你可能理解不了,那么我给你一些直观但不严格的理解。

1.微分和导数
历史上先有微分(大多数教材不会这样写),目的是这样的:
对函数y=F(x),已知函数上一点(x0,y0),希望求出在x0附近的y。
照理来说对于x=x0+Δx,y应该等于F(x0+Δx),但是这样算太麻烦,有时甚至不可能,所以要找一种近似的办法。
如果说当x改变时y随x是线性变化的,那么就很容易
Δy=kΔx,
于是F(x0+Δx)=F(x)+Δy。
对于一般的函数虽然不是线性的,但是可以用线性关系来近似,也就是说用一小段直线来代替曲线,这样
Δy≈kΔx
用该点的切线来代替原来的曲线最合适(因为和Δx无关,并且误差是一个二阶小量),当Δx非常小的时候这样做几乎就是对的,那么把上面的式子写成
dy=kdx,
这个就是微分,dx可以理解为比Δx更小(不严格)。
为了求出k,理论上只要算Δy/Δx,让Δx趋于0,取个极限就可以,这样就得到了和Δx无关,只和函数本身有关系的k,把这个叫做导数f(x)=F'(x)。
那么回过头去微分就写成了
dy=f(x)dx,或者dF(x)=f(x)dx
因为导数源自于Δy/Δx的极限,那么把导数写成
f(x)=dy/dx
也可以看作是从微分关系里把dx除下去。
(这段东西配合着教材上“导数的几何意义”看,有图更容易理解)

2.积分
积分(现在叫定积分)源自于求面积,是一种把图形切开来求和的方式。
f(x)在[a,b]上和x轴形成的图形面积近似是
Sum[f(x)Δx]
当Δx->0的时候就是图形的面积,那么把Δx换成dx,把S(Sum)拉长就变成了∫。
最关键的是Newton和Leibniz发现了如果F'(x)=f(x),那么
∫(a到b)f(x)dx=F(b)-F(a)
于是算积分的时候只要想办法算出反导数(一般叫原函数)就可以了。
由于对任何常数C,[F(x)+C]'=f(x),所以这样的运算不是确定的(当然,除了这个常数意外都是确定的),就叫做不定积分。

3.关于你写的几个式子
d/dx[∫f(x)dx]=f(x)
分两部分看,F(x)=∫f(x)dx,dF(x)/dx=f(x),这样就清楚了。
∫F'(x)dx=F(x)+c
本来的定义就是∫f(x)dx=F(x)+c,把f(x)=F'(x)代进去。
“微分运算与积分运算是互逆的。2个运算连在一起时,d∫完全抵消,∫d抵消后相差一常数。”
定义不定积分的时候说它是反导数,导数和微分又是一一对应的,所以这个就是互为逆运算,两次作用应该等于本身,至于∫d差一个常数是由于不定积分本身的不确定性造成的。

4.小结
把dx,dy,dF这种都看成是很小的小量,然后dy/dx可以理解成除法。
对于积分,看作是微分的逆运算。

补充:
我已经写得很清楚了,不过请你注意,这个是帮助你理解的,不是用来取代教材的。我估计你除了知道一些运算规则外什么都没理解,所以你应该好好把书看一看,这东西也算不得怎么难,我初中里自学的时候也没遇到多大困难,虽然理解不如现在深刻。

再补充一下,
历史上可能确实先有积分,因为定积分的需求很大,而且有一些特殊办法可以解出来。
再个你两个建议,你跟据自身情况看着办
1.如果你觉得是教材写得不好,那么换本教材看
2.如果你觉得你的数学理解力不够,那么趁早转专业
tachibana49
2008-12-28
知道答主
回答量:13
采纳率:0%
帮助的人:0
展开全部
F'(x)=f(x) 是定义

F'(x)=dF(x)/dx=f(x) =>dF(x)=f(x)dx (F'(x)=dF(x)/dx是导数的表示方法)

参考 wikipedia 的 Integral
Fundamental theorem of calculus
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式