1个回答
展开全部
由0<β<α<π/2,cos(α+β)=-3/5,sin(α-β)=5/13
得 0<α+β<π ,-π/2<α-β<π/2
所以 sin(α+β)=4/5,cos(α-β)=12/13
sinαsinβ = -1/2 [cos(α+β)-cos(α-β)] = 99/130
cosαcosβ = 1/2 [cos(α+β)+cos(α-β)] =21/130
sinαcosβ = 1/2 [sin(α+β)+sin(α-β)] =77/130
cosαsinβ = 1/2 [sin(α+β)-sin(α-β)] =27/130
(1)tanαtanβ = sinαsinβ/cosαcosβ = 33/7
(2)tanα/tanβ =sinαcosβ/cosαsinβ = 77/27
得 0<α+β<π ,-π/2<α-β<π/2
所以 sin(α+β)=4/5,cos(α-β)=12/13
sinαsinβ = -1/2 [cos(α+β)-cos(α-β)] = 99/130
cosαcosβ = 1/2 [cos(α+β)+cos(α-β)] =21/130
sinαcosβ = 1/2 [sin(α+β)+sin(α-β)] =77/130
cosαsinβ = 1/2 [sin(α+β)-sin(α-β)] =27/130
(1)tanαtanβ = sinαsinβ/cosαcosβ = 33/7
(2)tanα/tanβ =sinαcosβ/cosαsinβ = 77/27
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询