一道数学难题:求(sinx)^2 / (cosx)^3的不定积分,谢谢
2个回答
展开全部
由∫secx dx = ln|secx+tanx| + C1
故 ∫(secx)^3 dx
=∫secx dtanx
=secx·tanx -∫[(tanx)^2·secx]dx
=secx·tanx -∫{[(secx)^2 -1]·secx}dx
=secx·tanx - ∫(secx)^3 dx + ∫secx dx
=secx·tanx - ∫(secx)^3 dx + ln|secx+tanx| + C1
所以 ∫(secx)^3 dx =1/2 secx·tanx + 1/2 ln|secx+tanx| + C
∫(sinx)^2 / (cosx)^3 dx
=∫[1-(cosx)^2] / (cosx)^3 dx
=∫[(secx)^3 - secx] dx
=∫(secx)^3 dx - ∫secx dx
=1/2 secx·tanx - 1/2 ln|secx+tanx| + C
故 ∫(secx)^3 dx
=∫secx dtanx
=secx·tanx -∫[(tanx)^2·secx]dx
=secx·tanx -∫{[(secx)^2 -1]·secx}dx
=secx·tanx - ∫(secx)^3 dx + ∫secx dx
=secx·tanx - ∫(secx)^3 dx + ln|secx+tanx| + C1
所以 ∫(secx)^3 dx =1/2 secx·tanx + 1/2 ln|secx+tanx| + C
∫(sinx)^2 / (cosx)^3 dx
=∫[1-(cosx)^2] / (cosx)^3 dx
=∫[(secx)^3 - secx] dx
=∫(secx)^3 dx - ∫secx dx
=1/2 secx·tanx - 1/2 ln|secx+tanx| + C
展开全部
(sinx)^2 / (cosx)^3=1/cosx^3-1/cosx
=cosx/[1-sinx^2]^2-cosx/[1-sinx^2]
不定积分==[ln[abs(tanx)]+sin(x)/cos(x)^2]/2 -1/2ln|(1+sinx)/(1-sinx)|+C
==[ln[abs(tanx)]+sin(x)/cos(x)^2]/2 -ln[abstan(x+pi/4)]+C
=cosx/[1-sinx^2]^2-cosx/[1-sinx^2]
不定积分==[ln[abs(tanx)]+sin(x)/cos(x)^2]/2 -1/2ln|(1+sinx)/(1-sinx)|+C
==[ln[abs(tanx)]+sin(x)/cos(x)^2]/2 -ln[abstan(x+pi/4)]+C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |