一道数学难题:求(sinx)^2 / (cosx)^3的不定积分,谢谢
2个回答
展开全部
由∫secx dx = ln|secx+tanx| + C1
故 ∫(secx)^3 dx
=∫secx dtanx
=secx·tanx -∫[(tanx)^2·secx]dx
=secx·tanx -∫{[(secx)^2 -1]·secx}dx
=secx·tanx - ∫(secx)^3 dx + ∫secx dx
=secx·tanx - ∫(secx)^3 dx + ln|secx+tanx| + C1
所以 ∫(secx)^3 dx =1/2 secx·tanx + 1/2 ln|secx+tanx| + C
∫(sinx)^2 / (cosx)^3 dx
=∫[1-(cosx)^2] / (cosx)^3 dx
=∫[(secx)^3 - secx] dx
=∫(secx)^3 dx - ∫secx dx
=1/2 secx·tanx - 1/2 ln|secx+tanx| + C
故 ∫(secx)^3 dx
=∫secx dtanx
=secx·tanx -∫[(tanx)^2·secx]dx
=secx·tanx -∫{[(secx)^2 -1]·secx}dx
=secx·tanx - ∫(secx)^3 dx + ∫secx dx
=secx·tanx - ∫(secx)^3 dx + ln|secx+tanx| + C1
所以 ∫(secx)^3 dx =1/2 secx·tanx + 1/2 ln|secx+tanx| + C
∫(sinx)^2 / (cosx)^3 dx
=∫[1-(cosx)^2] / (cosx)^3 dx
=∫[(secx)^3 - secx] dx
=∫(secx)^3 dx - ∫secx dx
=1/2 secx·tanx - 1/2 ln|secx+tanx| + C
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
展开全部
(sinx)^2 / (cosx)^3=1/cosx^3-1/cosx
=cosx/[1-sinx^2]^2-cosx/[1-sinx^2]
不定积分==[ln[abs(tanx)]+sin(x)/cos(x)^2]/2 -1/2ln|(1+sinx)/(1-sinx)|+C
==[ln[abs(tanx)]+sin(x)/cos(x)^2]/2 -ln[abstan(x+pi/4)]+C
=cosx/[1-sinx^2]^2-cosx/[1-sinx^2]
不定积分==[ln[abs(tanx)]+sin(x)/cos(x)^2]/2 -1/2ln|(1+sinx)/(1-sinx)|+C
==[ln[abs(tanx)]+sin(x)/cos(x)^2]/2 -ln[abstan(x+pi/4)]+C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询