这题求答案,要过程好的加分,急急急
展开全部
1、证明:P在BC线段上
∵ PD⊥AB,CF⊥⊥AB
∴ PD//CF
过P做PG//AB,垂足为G,交CF与Q
∴ CQ⊥PG,且四边形FQPD为矩形
∴ PD=FQ
又∵△ABC为等腰三角形,且PE⊥AC
∴ PE=CQ
∴ PD+PE=FQ+CQ=CF
2、若点P在BC的延长线上,那么PE、PD、CF之间纯在的关系为:
PD=CF+PE
证明:点P在BC的延长线上
过C做CQ⊥DP,垂足为Q,
又∵PD⊥AB,CF⊥AB
∴四边形DQCF为矩形
∴DQ=CF,
又∵△ABC为等腰三角形
∴PQ=PE
∴PD=PQ+DQ=CF+PE
∵ PD⊥AB,CF⊥⊥AB
∴ PD//CF
过P做PG//AB,垂足为G,交CF与Q
∴ CQ⊥PG,且四边形FQPD为矩形
∴ PD=FQ
又∵△ABC为等腰三角形,且PE⊥AC
∴ PE=CQ
∴ PD+PE=FQ+CQ=CF
2、若点P在BC的延长线上,那么PE、PD、CF之间纯在的关系为:
PD=CF+PE
证明:点P在BC的延长线上
过C做CQ⊥DP,垂足为Q,
又∵PD⊥AB,CF⊥AB
∴四边形DQCF为矩形
∴DQ=CF,
又∵△ABC为等腰三角形
∴PQ=PE
∴PD=PQ+DQ=CF+PE
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询