已知 在Rt△ABC中,∠C=90°,AB的垂直平分线交AB于D,交BC于E,AE,CD相交于点O
1个回答
展开全部
证明:
∵DE是垂直平分线
∴AE=BE(垂直平分线上的点到两边的距离相等)
∴∠EAB=∠B
∵∠C=90°
∴CD=½AB=BD(直角三角形斜边的中线等于斜边的一半)
∴∠OCE=∠B
根据正弦定理:OE/OC=sin∠OCE/sin∠OEC
∵∠OEC=∠EAB+∠B=2∠B
∴OE/OC=sin∠B/sin2∠B=sin∠B/(2sin∠Bcos∠B)=1/(2cos∠B)
∵cos∠B=BC/AB
∴OE/OC=AB/2BC
∵DE是垂直平分线
∴AE=BE(垂直平分线上的点到两边的距离相等)
∴∠EAB=∠B
∵∠C=90°
∴CD=½AB=BD(直角三角形斜边的中线等于斜边的一半)
∴∠OCE=∠B
根据正弦定理:OE/OC=sin∠OCE/sin∠OEC
∵∠OEC=∠EAB+∠B=2∠B
∴OE/OC=sin∠B/sin2∠B=sin∠B/(2sin∠Bcos∠B)=1/(2cos∠B)
∵cos∠B=BC/AB
∴OE/OC=AB/2BC
追问
第一题呢?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询