大一高数上学期复习要点有哪些?
2013-11-01
展开全部
高等数学考试范围
一。数、极限、连续
1.主要内容:函数的概念、复合函数的概念、基本初等函数的性质及图像、极限的概念及四则运算、函数极限的性质、两个重要极限、极限存在准则(夹逼准则和单调有界准则)、无穷小的比较、函数连的概念、间断点及基本类型、闭区间上连续函数的性质(最大值、最小值、零点、介值定理)。
2.重点:函数的概念、复合函数的概念、基本函数的概念、基本初等函数的性质及图像、极限的概念及四则运算、求函数极限、连续的概念性质及应用。
3.难点:极限的∑-N、∑-δ定义,等价无穷小求极限。
二。函数微分学
1主要内容:导数与微分的概念,导数与微分的概念,导数的几何意义,函数求导与连续的关系,导数的四则运算及求法(复数函数求导,隐函数求导,参数式求导及求高阶求导)。罗尔、拉格朗日、柯西中值定理、函数中值定理的概念,用导数判断函数的单调性及单调区间,求极值、拐点、判断凸凹性,弧微分及曲率。
2重点:导数与微分的概念,导数的几何意义及应用,导数的四则运算及求法,罗尔和拉格朗日中值定理及应用,导数判断函数的单调性,导数求函数的极性、最值、拐点及判断其凹凸性。
3难点:求导数及用导数研究函数的性态。
三。一元函数积分学
1主要内容及重点:不定积分及定积分的概念与性质,不定积分的基本公式(22个),定积分与不定积分的换元性和分部积分法,定积分的应用(求面积、体积、平面曲线与弧长、变力做功、液体的压力、引力)牛顿?莱布尼茨公式。
2难点:广义积分定积分的应用。
四:向量代数与空间解析几何
1主要内容:空间直角坐标系;向量的概念及其表示,向量的运算(线性、点乘、叉乘、混合乘),单位向量,方向余弦,向量的坐标表示及用坐标进行向量运算、向量的夹角。平面方程(点法式、般式、截距式、两点式)及基本法,直线方程(对称式、参数式、一般式)及其求法,曲面方程的概念及几种曲面,直线、平面位置关系的判定、点到平面的距离。
2重点:空间直角坐标系,向量的概念及其表示向量的运算及其用坐标表示,平面方程、直线方程及求法,几种曲面(椭球面、双曲面,抛物面),直线,平面位置关系的判定。
3难点:向量的叉乘法,用平面、直线的位置关系解决有关的问题,曲线、曲面的投影。
五。多元函数的微分学。
1主要内容及重点,多元函数的概念,偏导数,全微分的概念,一阶偏导数的求法(复合函数、隐函数等)全微分及高阶导数的求法,多元函数的极值和条件极值的概念和求法,方向导数和梯度,偏导数的应用(求空间曲线的切线、法平面、曲面的切面、法线)。
2难点:复合函数、隐函数求导及高阶偏导,求条件极值。
六。多元函数积分学
1主要内容及重点:二重积分,三重积分的概念性质及计算。
2难点:三重积分的计算。
一。数、极限、连续
1.主要内容:函数的概念、复合函数的概念、基本初等函数的性质及图像、极限的概念及四则运算、函数极限的性质、两个重要极限、极限存在准则(夹逼准则和单调有界准则)、无穷小的比较、函数连的概念、间断点及基本类型、闭区间上连续函数的性质(最大值、最小值、零点、介值定理)。
2.重点:函数的概念、复合函数的概念、基本函数的概念、基本初等函数的性质及图像、极限的概念及四则运算、求函数极限、连续的概念性质及应用。
3.难点:极限的∑-N、∑-δ定义,等价无穷小求极限。
二。函数微分学
1主要内容:导数与微分的概念,导数与微分的概念,导数的几何意义,函数求导与连续的关系,导数的四则运算及求法(复数函数求导,隐函数求导,参数式求导及求高阶求导)。罗尔、拉格朗日、柯西中值定理、函数中值定理的概念,用导数判断函数的单调性及单调区间,求极值、拐点、判断凸凹性,弧微分及曲率。
2重点:导数与微分的概念,导数的几何意义及应用,导数的四则运算及求法,罗尔和拉格朗日中值定理及应用,导数判断函数的单调性,导数求函数的极性、最值、拐点及判断其凹凸性。
3难点:求导数及用导数研究函数的性态。
三。一元函数积分学
1主要内容及重点:不定积分及定积分的概念与性质,不定积分的基本公式(22个),定积分与不定积分的换元性和分部积分法,定积分的应用(求面积、体积、平面曲线与弧长、变力做功、液体的压力、引力)牛顿?莱布尼茨公式。
2难点:广义积分定积分的应用。
四:向量代数与空间解析几何
1主要内容:空间直角坐标系;向量的概念及其表示,向量的运算(线性、点乘、叉乘、混合乘),单位向量,方向余弦,向量的坐标表示及用坐标进行向量运算、向量的夹角。平面方程(点法式、般式、截距式、两点式)及基本法,直线方程(对称式、参数式、一般式)及其求法,曲面方程的概念及几种曲面,直线、平面位置关系的判定、点到平面的距离。
2重点:空间直角坐标系,向量的概念及其表示向量的运算及其用坐标表示,平面方程、直线方程及求法,几种曲面(椭球面、双曲面,抛物面),直线,平面位置关系的判定。
3难点:向量的叉乘法,用平面、直线的位置关系解决有关的问题,曲线、曲面的投影。
五。多元函数的微分学。
1主要内容及重点,多元函数的概念,偏导数,全微分的概念,一阶偏导数的求法(复合函数、隐函数等)全微分及高阶导数的求法,多元函数的极值和条件极值的概念和求法,方向导数和梯度,偏导数的应用(求空间曲线的切线、法平面、曲面的切面、法线)。
2难点:复合函数、隐函数求导及高阶偏导,求条件极值。
六。多元函数积分学
1主要内容及重点:二重积分,三重积分的概念性质及计算。
2难点:三重积分的计算。
2013-11-01
展开全部
大一的 高数呀
首先 定积分 要会 要理解 要掌握
其次 微积分 要会 要理解 要掌握
最后就是 定积分与微积分 互算 一定要掌握
我当初 老师 教完定积分 请假半个月 再教微积分 我花了 2个多月 才自己搞明白
以上3点掌握 及格没问题
首先 定积分 要会 要理解 要掌握
其次 微积分 要会 要理解 要掌握
最后就是 定积分与微积分 互算 一定要掌握
我当初 老师 教完定积分 请假半个月 再教微积分 我花了 2个多月 才自己搞明白
以上3点掌握 及格没问题
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2013-11-01
展开全部
极限公式 ...
导数微分公式
反过来的不定积分公式 ...
定积分的运算
曲率的那一个式子
貌似就这些 `
导数微分公式
反过来的不定积分公式 ...
定积分的运算
曲率的那一个式子
貌似就这些 `
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2013-11-01
展开全部
额 `
还有和差化积和积化和差
三角函数的那几个式子
没了 `
还有和差化积和积化和差
三角函数的那几个式子
没了 `
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2013-11-01
展开全部
我认为主要是微积分,背公式…
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询