有关数据结构哈希表的问题?

什么是哈希函数?哈希表如何建立?冲突是怎样产生的?如何解决?(最好用代码来演示解决)用C++解决... 什么是哈希函数?
哈希表如何建立?
冲突是怎样产生的? 如何解决?
(最好用代码来演示解决)用C++解决
展开
 我来答
liujq007
2008-12-31 · TA获得超过942个赞
知道大有可为答主
回答量:1035
采纳率:0%
帮助的人:1081万
展开全部
Hash,一般翻译做"散列",也有直接音译为"哈希"的,就是把任意长度的输入(又叫做预映射, pre-image),通过散列算法,变换成固定长度的输出,该输出就是散列值。这种转换是一种压缩映射,也就是,散列值的空间通常远小于输入的空间,不同的输入可能会散列成相同的输出,而不可能从散列值来唯一的确定输入值。
简单的说就是一种将任意长度的消息压缩到某一固定长度的消息摘要的函数。

hashing定义了一种将字符组成的字符串转换为固定长度(一般是更短长度)的数值或索引值的方法,称为散列法,也叫哈希法。由于通过更短的哈希值比用原始值进行数据库搜索更快,这种方法一般用来在数据库中建立索引并进行搜索,同时还用在各种解密算法中。

设所有可能出现的关键字集合记为u(简称全集)。实际发生(即实际存储)的关键字集合记为k(|k|比|u|小得多)。|k|是集合k中元素的个数。
散列方法是使用函数hash将u映射到表t[0..m-1]的下标上(m=o(|u|))。这样以u中关键字为自变量,以h为函数的运算结果就是相应结点的存储地址。从而达到在o(1)时间内就可完成查找。
其中:
① hash:u→{0,1,2,…,m-1} ,通常称h为散列函数(hash function)。散列函数h的作用是压缩待处理的下标范围,使待处理的|u|个值减少到m个值,从而降低空间开销。
② t为散列表(hash table)。
③ hash(ki)(ki∈u)是关键字为ki结点存储地址(亦称散列值或散列地址)。
④ 将结点按其关键字的散列地址存储到散列表中的过程称为散列(hashing).
比如:有一组数据包括用户名字、电话、住址等,为了快速的检索,我们可以利用名字作为关键码,hash规则就是把名字中每一个字的拼音的第一个字母拿出来,把该字母在26个字母中的顺序值取出来加在一块作为改记录的地址。比如张三,就是z+s=26+19=45。就是把张三存在地址为45处。
但是这样存在一个问题,比如假如有个用户名字叫做:周四,那么计算它的地址时也是z+s=45,这样它与张三就有相同的地址,这就是冲突,也叫作碰撞!
冲突:两个不同的关键字,由于散列函数值相同,因而被映射到同一表位置上。该现象称为冲突(collision)或碰撞。发生冲突的两个关键字称为该散列函数的同义词(synonym)。
冲突基本上不可避免的,除非数据很少,我们只能采取措施尽量避免冲突,或者寻找解决冲突的办法。影响冲突的因素
冲突的频繁程度除了与h相关外,还与表的填满程度相关。
设m和n分别表示表长和表中填人的结点数,则将α=n/m定义为散列表的装填因子(load factor)。α越大,表越满,冲突的机会也越大。通常取α≤1。
散列函数的构造方法:
1、散列函数的选择有两条标准:简单和均匀。
简单指散列函数的计算简单快速;
均匀指对于关键字集合中的任一关键字,散列函数能以等概率将其映射到表空间的任何一个位置上。也就是说,散列函数能将子集k随机均匀地分布在表的地址集{0,1,…,m-1}上,以使冲突最小化。
2、常用散列函数
(1)直接定址法:比如在一个0~100岁的年龄统计表,我们就可以把年龄作为地址。
(2)平方取中法
具体方法:先通过求关键字的平方值扩大相近数的差别,然后根据表长度取中间的几位数作为散列函数值。又因为一个乘积的中间几位数和乘数的每一位都相关,所以由此产生的散列地址较为均匀。
(3)除留余数法
取关键字被某个不大于哈希表表长m的数p除后所得余数为哈希地址。该方法的关键是选取m。选取的m应使得散列函数值尽可能与关键字的各位相关。m最好为素数(4)随机数法
选择一个随机函数,取关键字的随机函数值为它的散列地址,即
h(key)=random(key)
其中random为伪随机函数,但要保证函数值是在0到m-1之间。
处理冲突的方法:
1、开放定址法
hi=(h(key)+di) mod m i=1,2,...,k(k<=m-1)
其中m为表长,di为增量序列
如果di值可能为1,2,3,...m-1,称线性探测再散列。
如果di取值可能为1,-1,2,-2,4,-4,9,-9,16,-16,...k*k,-k*k(k<=m/2)
称二次探测再散列。
如果di取值可能为伪随机数列。称伪随机探测再散列。开放地址法堆装填因子的要求
开放定址法要求散列表的装填因子α≤l,实用中取α为0.5到0.9之间的某个值为宜。
②二次探查法(quadratic probing)
二次探查法的探查序列是:
hi=(h(key)+i*i)%m 0≤i≤m-1 //即di=i2
即探查序列为d=h(key),d+12,d+22,…,等。
该方法的缺陷是不易探查到整个散列空间。
③双重散列法(double hashing)
该方法是开放定址法中最好的方法之一,它的探查序列是:
hi=(h(key)+i*h1(key))%m 0≤i≤m-1 //即di=i*h1(key)
即探查序列为:
d=h(key),(d+h1(key))%m,(d+2h1(key))%m,…,等。
该方法使用了两个散列函数h(key)和h1(key),故也称为双散列函数探查法。
2、拉链法
拉链法解决冲突的方法
拉链法解决冲突的做法是:将所有关键字为同义词的结点链接在同一个单链表中。若选定的散列表长度为m,则可将散列表定义为一个由m个头指针组成的指针数组t[0..m-1]。凡是散列地址为i的结点,均插入到以t为头指针的单链表中。t中各分量的初值均应为空指针。在拉链法中,装填因子α可以大于1,但一般均取α≤1。
3、建立一个公共溢出区
假设哈希函数的值域为[0,m-1],则设向量hashtable[0..m-1]为基本表,另外设立存储空间向量overtable[0..v]用以存储发生冲突的记录。
性能分析
插入和删除的时间均取决于查找,故下面只分析查找操作的时间性能。
虽然散列表在关键字和存储位置之间建立了对应关系,理想情况是无须关键字的比较就可找到待查关键字。但是由于冲突的存在,散列表的查找过程仍是一个和关键字比较的过程,不过散列表的平均查找长度比顺序查找、二分查找等完全依赖于关键字比较的查找要小得多。
(1)查找成功的asl
散列表上的查找优于顺序查找和二分查找。
(2) 查找不成功的asl
对于不成功的查找,顺序查找和二分查找所需进行的关键字比较次数仅取决于表长,而散列查找所需进行的关键字比较次数和待查结点有关。因此,在等概率情况下,也可将散列表在查找不成功时的平均查找长度,定义为查找不成功时对关键字需要执行的平均比较次数。
注意:
①由同一个散列函数、不同的解决冲突方法构造的散列表,其平均查找长度是不相同的。
②散列表的平均查找长度不是结点个数n的函数,而是装填因子α的函数。因此在设计散列表时可选择α以控制散列表的平均查找长度。
③ α的取值
α越小,产生冲突的机会就小,但α过小,空间的浪费就过多。只要α选择合适,散列表上的平均查找长度就是一个常数,即散列表上查找的平均时间为o(1)。
④ 散列法与其他查找方法的区别
除散列法外,其他查找方法有共同特征为:均是建立在比较关键字的基础上。其中顺序查找是对无序集合的查找,每次关键字的比较结果为"="或"!="两种可能,其平均时间为o(n);其余的查找均是对有序集合的查找,每次关键字的比较有"="、"<"和">"三种可能,且每次比较后均能缩小下次的查找范围,故查找速度更快,其平均时间为o(lgn)。而散列法是根据关键字直接求出地址的查找方法,其查找的期望时间为o(1)。
例子:例子:选取哈希函数h(k)=(3k)%11,用线性探测再散列法处理冲突。
试在0~10的散列地址空间中,对关键序列22,41,53,46,30,13,01,67构造哈希表,并求等概率情况下查找不成功的平均查找长度asl。

参考资料: 百科

光点科技
2023-08-15 广告
通常情况下,我们会按照结构模型把系统产生的数据分为三种类型:结构化数据、半结构化数据和非结构化数据。结构化数据,即行数据,是存储在数据库里,可以用二维表结构来逻辑表达实现的数据。最常见的就是数字数据和文本数据,它们可以某种标准格式存在于文件... 点击进入详情页
本回答由光点科技提供
flyyyyyyyyyyy
2009-01-01 · 超过18用户采纳过TA的回答
知道答主
回答量:35
采纳率:0%
帮助的人:0
展开全部
举个简单的例子:
有一百个数字1-100,随机产生20个,求20个不重复的数的和。
例如:1,1,1,1,1,1,1,1,1,1,2,2,3,6,3,2,3,2,3,2
则20个不重复的数的和=1+2+3+6=12
main()
{
int num;
while(循环20次)
{
num = GetNumber();//得到一个随机数字
扫面链表;
if(链表里面没有这个数字)
{
把得到的数字加到链表里;
result+= num;
}
}
}
上面的思想是,每次得到一个数字,让它和链表里的数字依依比较,如果连表里面没有,就把它直接加到连表里。如果连表里的东西多了的话,那么就要比较很多次,很浪费时间。

如果用哈西表的话,就可以通过查找表,一次就确定数字是否重复:
main()
{
int num;
int hash[101];//初始化都等于0
while(循环20次)
{
num = GetNumber();//得到一个随机数字

if(hash[num]==0)
{
hash[num]=1;
result+= num;
}
}
}
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式