求解一道高数极限题,求过程
2个回答
展开全部
令A=∫(0→π/2)lncosxdx
B=∫(0→π/2)lnsinxdx
则B=∫(π/2→0)lnsin(π/2-t)d(π/2-t) (t=π/2-x)
=∫(0→π/2)lncosxdx
=A
2A=A+B=∫(0→π/2)ln(sinxcosx)dx
=∫(0→π/2)(ln(sin2x)-ln2)dx
=1/2*∫(0→π/2)lnsin(2x)d(2x)-πln2/2
=1/2*∫(0→π)lnsinxdx-πln2/2
=1/2*(∫(0→π/2)lnsinxdx+∫(π/2→π)lnsinxdx)-πln2/2
=1/2*(∫(0→π/2)lnsinxdx+∫(0→π/2)lnsintdt)-πln2/2 (t=π-x)
=∫(0→π/2)lnsinxdx-πln2/2
=A-πln2/2
所以A=-πln2/2
B=∫(0→π/2)lnsinxdx
则B=∫(π/2→0)lnsin(π/2-t)d(π/2-t) (t=π/2-x)
=∫(0→π/2)lncosxdx
=A
2A=A+B=∫(0→π/2)ln(sinxcosx)dx
=∫(0→π/2)(ln(sin2x)-ln2)dx
=1/2*∫(0→π/2)lnsin(2x)d(2x)-πln2/2
=1/2*∫(0→π)lnsinxdx-πln2/2
=1/2*(∫(0→π/2)lnsinxdx+∫(π/2→π)lnsinxdx)-πln2/2
=1/2*(∫(0→π/2)lnsinxdx+∫(0→π/2)lnsintdt)-πln2/2 (t=π-x)
=∫(0→π/2)lnsinxdx-πln2/2
=A-πln2/2
所以A=-πln2/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询