如图,在△ABC中,∠A:∠B:∠C=5:4:3,BD,CE分别是边AC,AB上的高,BD,CE相交于点H,求∠BHC的度数

K肸筱妍
2014-01-01 · TA获得超过211个赞
知道答主
回答量:23
采纳率:0%
帮助的人:20.4万
展开全部
解:设∠A=3x,∠B=4x,∠C=5x,∵∠A+∠B+∠C=180°,∴3x+4x+5x=180°,∴x=15°,∴∠A=45°,∠B=60°,∠C=75°.∵四边形AEHD内角和等于360°,∴∠A+∠AEH+∠ADH+∠EHD=360°;∵CE⊥AB;BD⊥AC,∴∠AEH=90°,∠ADH=90°,∴45°+90°+90°+∠EHD=360°,∴∠EHD=135°.则∠BHC=∠EHD=135°
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式