如图,点D.E在△ABC的边BC上,AD=AE,AB=AC,求证:BD=EC.
展开全部
解:因为AD=AE(已知)
因为∠ADE=∠AED(等边对等角)
因为∠ADE+∠ADB=180°
∠AED+∠AEC=180°(等式性质)
所以∠ADB=∠AEC(等角的补角相等)
因为AB=AC(已知)
所以∠B=∠C(等角对等边)
在△ABD与△AED中
∠B=∠C(已证)
∠ADB=∠AEC(已证)
AB=AC(已知)
所以△ABD∽△AED(A.A.S)
所以BD=CE(全等三角形对应边相等)
因为∠ADE=∠AED(等边对等角)
因为∠ADE+∠ADB=180°
∠AED+∠AEC=180°(等式性质)
所以∠ADB=∠AEC(等角的补角相等)
因为AB=AC(已知)
所以∠B=∠C(等角对等边)
在△ABD与△AED中
∠B=∠C(已证)
∠ADB=∠AEC(已证)
AB=AC(已知)
所以△ABD∽△AED(A.A.S)
所以BD=CE(全等三角形对应边相等)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询