如图,在四边形ABCD中,AB=BC,BE⊥AD垂足为E,CD⊥AD垂足为D。求证:BE=DE.
1个回答
展开全部
证明:作CF⊥BE,垂足为F,
∵BE⊥AD,
∴∠AEB=90°,
∴∠FED=∠D=∠CFE=90°,
∴四边形EFCD为矩形,
∴DE=CF,
∵∠FED=∠D=∠CFE=90°,∠CBE+∠ABE=90°,∠BAE+∠ABE=90°,
∴∠BAE=∠CBF,
∵在△BAE和△CBF中,
∠BEA=∠CFB
∠A=∠CBF
AB=BC
∴△BAE≌△CBF(AAS),
∴BE=CF=DE,
即BE=DE.
如果您认可我的回答,请点击“采纳为满意答案”,祝学习进步!
∵BE⊥AD,
∴∠AEB=90°,
∴∠FED=∠D=∠CFE=90°,
∴四边形EFCD为矩形,
∴DE=CF,
∵∠FED=∠D=∠CFE=90°,∠CBE+∠ABE=90°,∠BAE+∠ABE=90°,
∴∠BAE=∠CBF,
∵在△BAE和△CBF中,
∠BEA=∠CFB
∠A=∠CBF
AB=BC
∴△BAE≌△CBF(AAS),
∴BE=CF=DE,
即BE=DE.
如果您认可我的回答,请点击“采纳为满意答案”,祝学习进步!
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询