求以椭圆X^2/25+y^2/9=1的长轴端点作焦点 并且过点(4倍根号2,3)的双曲线方程

→_→comeon... →_→ come on 展开
yuyou403
2013-12-18 · TA获得超过6.4万个赞
知道顶级答主
回答量:2.2万
采纳率:95%
帮助的人:1亿
展开全部
答:椭圆(x^2)/25+(y^2)/9=1
a^2=25,b^2=9
所以:a=5
所以:长轴端点为(-5,0)和(5,0)
作为双曲线的焦点
设双曲线为(x^2)/m^2-(y^2)/n^2=1
所以:c^2=m^2+n^2=25…………(1)
点(4√2,3)代入双曲线得:32/m^2-9/n^2=1……………………(2)
由(1)和(2)解得:
m^2=50,n^2=-25(不符合舍去)或者m^2=16,n^2=9
所以:双曲线为(x^2)/16-(y^2)/9=1
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式